scholarly journals Lateral transduction is inherent to the life cycle of the archetypical Salmonella phage P22

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alfred Fillol-Salom ◽  
Rodrigo Bacigalupe ◽  
Suzanne Humphrey ◽  
Yin Ning Chiang ◽  
John Chen ◽  
...  

AbstractLysogenic induction ends the stable association between a bacteriophage and its host, and the transition to the lytic cycle begins with early prophage excision followed by DNA replication and packaging (ERP). This temporal program is considered universal for P22-like temperate phages, though there is no direct evidence to support the timing and sequence of these events. Here we report that the long-standing ERP program is an observation of the experimentally favored Salmonella phage P22 tsc229 heat-inducible mutant, and that wild-type P22 actually follows the replication-packaging-excision (RPE) program. We find that P22 tsc229 excises early after induction, but P22 delays excision to just before it is detrimental to phage production. This allows P22 to engage in lateral transduction. Thus, at minimal expense to itself, P22 has tuned the timing of excision to balance propagation with lateral transduction, powering the evolution of its host through gene transfer in the interest of self-preservation.

2021 ◽  
Author(s):  
Alfred Fillol-Salom ◽  
Rodrigo Bacigalupe ◽  
Suzanne Humphrey ◽  
Yin Ning Chiang ◽  
John Chen ◽  
...  

AbstractLysogenic induction ends the stable association between a bacteriophage and its host, and the transition to the lytic cycle begins with prophage excision followed by DNA replication and packaging (ERP) – a temporal program that is considered universal for most temperate phages. Here we report that the long-standing ERP program is an artefact of the experimentally favoured Salmonella phage P22 tsc229 heat-inducible mutant, and that wildtype P22 actually follows a replication-packaging-excision (RPE) program. We found that unlike P22 tsc229, P22 delayed excision to just before it was detrimental to phage production. Thus, at minimal expense to itself, P22 has tuned the timing of excision to balance propagation with lateral transduction, powering the evolution of its host through gene transfer in the interest of self-preservation.One Sentence SummaryGenetic analyses propose a new life cycle for temperate bacteriophages.


Genetics ◽  
1976 ◽  
Vol 83 (3) ◽  
pp. 459-475
Author(s):  
Adrienne P Jessop

ABSTRACT Two independently isolated specialized transducing phages, P22pro-1 and P22pro-3, have been studied. Lysates of P22pro-1contain a majority of transducing phages which can go through the lytic cycle only in mixed infection; these defective phages transduce by lysogenization in mixed infection and by substitution in single infection. A few of the transducing phages in P22pro-1 lysates appear to be non-defective, being able to form plaques and to transduce by lysogenization in single infection. Transduction by P22pro-3 lysates is effected by non-defective transducing phages, which transduce by lysogenization; these lysates also contain a majority of defective phages which do not co-operate in mixed infection. The P22pro-1 genome is thought to contain an insertion of bacterial DNA longer than the terminal repetition present in P22 wild type, so that at maturation a population of differently defective phages is produced. The exact structure of the P22pro-3 genome is open to conjecture, but it seems clear that the insertion of bacterial DNA is smaller than that in P22pro-1. Both P22pro-1 and P22pro-3 are defective in integration at ataA under non-selective conditions, although both integrate on medium that lacks proline.


1982 ◽  
Vol 257 (13) ◽  
pp. 7864-7871 ◽  
Author(s):  
D P Goldenberg ◽  
P B Berget ◽  
J King

1992 ◽  
Vol 12 (9) ◽  
pp. 3827-3833 ◽  
Author(s):  
T H Adams ◽  
W A Hide ◽  
L N Yager ◽  
B N Lee

In contrast to many other cases in microbial development, Aspergillus nidulans conidiophore production initiates primarily as a programmed part of the life cycle rather than as a response to nutrient deprivation. Mutations in the acoD locus result in "fluffy" colonies that appear to grow faster than the wild type and proliferate as undifferentiated masses of vegetative cells. We show that unlike wild-type strains, acoD deletion mutants are unable to make conidiophores under optimal growth conditions but can be induced to conidiate when growth is nutritionally limited. The requirement for acoD in conidiophore development occurs prior to activation of brlA, a primary regulator of development. The acoD transcript is present both in vegetative hyphae prior to developmental induction and in developing cultures. However, the effects of acoD mutations are detectable only after developmental induction. We propose that acoD activity is primarily controlled at the posttranscriptional level and that it is required to direct developmentally specific changes that bring about growth inhibition and activation of brlA expression to result in conidiophore development.


Genetics ◽  
1997 ◽  
Vol 145 (1) ◽  
pp. 17-27 ◽  
Author(s):  
Nicholas R Benson ◽  
John Roth

In the course of a lytic infection the Salmonella phage P22 occasionally encapsulates bacterial DNA instead of phage DNA. Thus, phage lysates include two classes of viral particles. Phage particles carrying bacterial DNA are referred to as transducing particles and deliver this DNA to a host as efficiently as particles carrying phage DNA. Once injected, the transduced DNA can either recombine with the recipient chromosome to form a “complete” transductant, or it can establish itself as an expressible, nonreplicating genetic element and form an “abortive” transductant. In this work, we describe a P22-phage mutant with reduced ability to form abortive transductants. The mutation responsible for this phenotype, called tdx-1, was found as one of two mutations contributing to the high-transducing phenotype of the P22-mutant HT12/4. In addition, the tdx-1 mutation is lethal when combined with an erf-am mutation. The tdx-1 mutation has been mapped to a region of the P22 genome that encodes several injected proteins and may involve more than one mutant locus. The phenotypes of the tdx-1 mutation suggest that the Tdx protein(s) normally assist in the circularization of the P22 genome and also contribute to the formation of DNA circles thought to be required for abortive transduction.


2018 ◽  
Vol 315 (4) ◽  
pp. G433-G442 ◽  
Author(s):  
Kayte A. Jenkin ◽  
Peijian He ◽  
C. Chris Yun

Lysophosphatidic acid (LPA) is a bioactive lipid molecule, which regulates a broad range of pathophysiological processes. Recent studies have demonstrated that LPA modulates electrolyte flux in the intestine, and its potential as an antidiarrheal agent has been suggested. Of six LPA receptors, LPA5 is highly expressed in the intestine. Recent studies by our group have demonstrated activation of Na+/H+ exchanger 3 (NHE3) by LPA5. However, much of what has been elucidated was achieved using colonic cell lines that were transfected to express LPA5. In the current study, we engineered a mouse that lacks LPA5 in intestinal epithelial cells, Lpar5ΔIEC, and investigated the role of LPA5 in NHE3 regulation and fluid absorption in vivo. The intestine of Lpar5ΔIEC mice appeared morphologically normal, and the stool frequency and fecal water content were unchanged compared with wild-type mice. Basal rates of NHE3 activity and fluid absorption and total NHE3 expression were not changed in Lpar5ΔIEC mice. However, LPA did not activate NHE3 activity or fluid absorption in Lpar5ΔIEC mice, providing direct evidence for the regulatory role of LPA5. NHE3 activation involves trafficking of NHE3 from the terminal web to microvilli, and this mobilization of NHE3 by LPA was abolished in Lpar5ΔIEC mice. Dysregulation of NHE3 was specific to LPA, and insulin and cholera toxin were able to stimulate and inhibit NHE3, respectively, in both wild-type and Lpar5ΔIEC mice. The current study for the first time demonstrates the necessity of LPA5 in LPA-mediated stimulation of NHE3 in vivo. NEW & NOTEWORTHY This study is the first to assess the role of LPA5 in NHE3 regulation and fluid absorption in vivo using a mouse that lacks LPA5 in intestinal epithelial cells, Lpar5ΔIEC. Basal rates of NHE3 activity and fluid absorption, and total NHE3 expression were not changed in Lpar5ΔIEC mice. However, LPA did not activate NHE3 activity or fluid absorption in Lpar5ΔIEC mice, providing direct evidence for the regulatory role of LPA5.


2006 ◽  
Vol 74 (6) ◽  
pp. 3305-3313 ◽  
Author(s):  
Xin Li ◽  
Xianzhong Liu ◽  
Deborah S. Beck ◽  
Fred S. Kantor ◽  
Erol Fikrig

ABSTRACT BBK32, a fibronectin-binding protein of Borrelia burgdorferi, is one of many surface lipoproteins that are differentially expressed by the Lyme disease spirochete at various stages of its life cycle. The level of BBK32 expression in B. burgdorferi is highest during infection of the mammalian host and lowest in flat ticks. This temporal expression profile, along with its fibronectin-binding activity, strongly suggests that BBK32 may play an important role in Lyme pathogenesis in the host. To test this hypothesis, we constructed an isogenic BBK32 deletion mutant from wild-type B. burgdorferi B31 by replacing the BBK32 gene with a kanamycin resistance cassette through homologous recombination. We examined both the wild-type strain and the BBK32 deletion mutant extensively in the experimental mouse-tick model of the Borrelia life cycle. Our data indicated that B. burgdorferi lacking BBK32 retained full pathogenicity in mice, regardless of whether mice were infected artificially by syringe inoculation or naturally by tick bite. The loss of BBK32 expression in the mutant had no adverse effect on spirochete acquisition (mouse-to-tick) and transmission (tick-to-mouse) processes. These results suggest that additional B. burgdorferi proteins can complement the function of BBK32, fibronectin binding or otherwise, during the natural spirochete life cycle.


1984 ◽  
Vol 4 (4) ◽  
pp. 813-816
Author(s):  
A Barkan ◽  
J E Mertz

The size distributions of polyribosomes containing each of three simian virus 40 late 16S mRNA species that differ in nucleotide sequence only within their leaders were determined. The two 16S RNA species with shorter leaders were incorporated into polysomes that were both larger (on average) and narrower in size distribution than was the predominant wild-type 16S RNA. Therefore, the nucleotide sequence of the leader can influence the number of ribosomes present on the body of an mRNA molecule. We propose a model in which the excision from leaders of sizeable translatable regions permits more frequent utilization of internally located translation initiation signals, thereby enabling genes encoded within the bodies of polygenic mRNAs to be translated at higher rates. In addition, the data provide the first direct evidence that VP1 can, indeed, be synthesized in vivo from the species of 16S mRNA that also encodes the 61-amino acid leader protein.


Development ◽  
1997 ◽  
Vol 124 (20) ◽  
pp. 4121-4131 ◽  
Author(s):  
Q. Lu ◽  
B.D. Shur

A variety of sperm surface components have been suggested to mediate gamete recognition by binding to glycoside ligands on the egg coat glycoprotein ZP3. The function of each of these candidate receptors is based upon varying degrees of circumstantial and direct evidence; however, the effects on fertilization of targeted mutations in any of these candidate receptors have not yet been reported. In this paper, we describe the effects of targeted mutations in beta1,4-galactosyltransferase, the best studied of the candidate receptors for ZP3. Surprisingly, galactosyltransferase-null (gt[−/−]) males are fertile; however, sperm from gt(−/−) males bind less radiolabeled ZP3 than wild-type sperm, and are unable to undergo the acrosome reaction in response to either ZP3 or anti-galactosyltransferase antibodies, as do wild-type sperm. In contrast, gt(−/−) sperm undergo the acrosome reaction normally in response to calcium ionophore, which bypasses the requirement for ZP3 binding. The inability of gt(−/−) sperm to undergo a ZP3-induced acrosome reaction renders them physiologically inferior to wild-type sperm, as assayed by their relative inability to penetrate the egg coat and fertilize the oocyte in vitro. Thus, although ZP3 binding and subsequent induction of the acrosome reaction are dispensable for fertilization, they impart a physiological advantage to the fertilizing sperm. A second strain of mice was created that is characterized by a loss of of the long galactosyltransferase isoform responsible for ZP3-dependent signal transduction, but which maintains normal levels of Golgi galactosylation. Sperm from these mice show that the defective sperm-egg interactions in gt(−/−) mice are due directly to a loss of the long galactosyltransferase isoform from the sperm surface and are independent of the state of intracellular galactosylation during spermatogenesis.


1989 ◽  
Vol 9 (4) ◽  
pp. 1754-1758
Author(s):  
T M Underhill ◽  
W F Flintoff

A methotrexate-resistant Chinese hamster ovary cell line deficient in methotrexate uptake has been complemented to methotrexate sensitivity by transfection with DNA isolated from either wild-type Chinese hamster ovary or human G2 cells. Primary and secondary transfectants regained the ability to take up methotrexate in a manner similar to that of wild-type cells, and in the case of those transfected with human DNA, to contain human-specific DNA sequences. The complementation by DNA-mediated gene transfer of this methotrexate-resistant phenotype provides a basis for the cloning of a gene involved in methotrexate uptake.


Sign in / Sign up

Export Citation Format

Share Document