scholarly journals Role of mutations and post-translational modifications in systemic AL amyloidosis studied by cryo-EM

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lynn Radamaker ◽  
Sara Karimi-Farsijani ◽  
Giada Andreotti ◽  
Julian Baur ◽  
Matthias Neumann ◽  
...  

AbstractSystemic AL amyloidosis is a rare disease that is caused by the misfolding of immunoglobulin light chains (LCs). Potential drivers of amyloid formation in this disease are post-translational modifications (PTMs) and the mutational changes that are inserted into the LCs by somatic hypermutation. Here we present the cryo electron microscopy (cryo-EM) structure of an ex vivo λ1-AL amyloid fibril whose deposits disrupt the ordered cardiomyocyte structure in the heart. The fibril protein contains six mutational changes compared to the germ line and three PTMs (disulfide bond, N-glycosylation and pyroglutamylation). Our data imply that the disulfide bond, glycosylation and mutational changes contribute to determining the fibril protein fold and help to generate a fibril morphology that is able to withstand proteolytic degradation inside the body.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3520-3520
Author(s):  
Bonnie K. Arendt ◽  
Gregory J. Ahmann ◽  
Erin M. Mulvihill ◽  
Laura A. Sikkink ◽  
Angela Dispenzieri ◽  
...  

Abstract Immunoglobulin (Ig) light chain (LC)-associated amyloidosis (AL) is a fatal plasma cell (PC) disorder characterized by the overproduction of Ig light chains that deposit in an abnormal conformation as amyloid throughout the body. Lambda LC are involved in amyloid deposition 2–3 times more often than kappa LC, and certain LC Ig variable genes are more frequently involved than others and influence clinical presentation and outcome. AL is a potential complication of any immunoglobulin clonal process, but is most often pathologically associated with minimal clonal expansion of PC, as seen in monoclonal gammopathy of undetermined significance. It is much less commonly observed in patients with multiple myeloma (MM). Because of this, and to our knowledge, there are no cell lines that have been established from AL patients, an experimental tool that would be of great value in studying amyloid formation and the biology of amyloid producing PC. In this study, we have established two cell lines from a 50 yr old female initially diagnosed with AL. Upon initial diagnosis, the BM aspirate consisted of 27% IgG λPC with a PC labeling index (PCLI) of 1.9% and a κ to λratio of <0.1. Amyloid was present in periosteal vessel walls and in the fat aspirate. The first cell line, ALMC-1, was established from BM mononuclear cells isolated from the diagnostic aspirate. The patient received a peripheral blood stem cell transplant (PBSCT) 2 months later, but relapsed within 100 days post-PBSCT with symptomatic myeloma. At relapse, the patient’s BM aspirate consisted of 70% λ+ PC and a PCLI of 20%; the second cell line, ALMC-2 was established from this aspirate. IgVL and IgVH analysis revealed that both cell lines expressed identical sequences and used IgVλ 6–57*01, IgλJ3*02, and IgλC3*03: both used the IgVH VH3–21 gene and the extent of somatic mutation was approximately 4%. Both cell lines produce significant FLC, and studies are currently underway to characterize in vitro amyloid production. We next used fluorescence in situ hybridization (FISH) to identify the genetic defects in this patient’s tumor population before and after transition to symptomatic MM. The initial BM aspirate at time of diagnosis of AL revealed approximately 30% of the PC had clear evidence of c-MYC gene amplification. In the subsequent draws as well as in both cell lines, 100% c-MYC amplification was identified, consistent with clonal selection. FISH analysis also revealed that 40% of cells had p53 deletion upon initial diagnosis, whereas the subsequent samples and cell lines were 100% for p53 deletion. All cells also had an IgH translocation that did not involve any commonly observed chromosome partners. Lastly, we have characterized the cytokine responsiveness of both cell lines. Although some differences are observed between ALMC-1 and ALMC-2, IL-6 and IGF-1 stimulated growth in both cell lines to varying degrees and both lines expressed autocrine IGF-I. In summary, our initial characterization of ALMC-1 and ALMC-2 predicts that these unique cell lines will prove to be an invaluable tool to better understand AL, from the combined perspectives of amyloidogenic protein structure and amyloid formation, genetics, and cell biology. Insight gained from this model system may eventually have an impact in the clinical arena by providing a better understanding of this incurable disease.


2020 ◽  
Author(s):  
Lynn Radamaker ◽  
Julian Baur ◽  
Stefanie Huhn ◽  
Christian Haupt ◽  
Ute Hegenbart ◽  
...  

AbstractSystemic AL amyloidosis is a debilitating and potentially fatal disease that arises from the misfolding and fibrillation of immunoglobulin light chains (LCs). The disease is patient-specific with essentially each patient possessing a unique LC sequence. In this study, we present the first ex vivo fibril structures of a λ3 LC. The fibrils were extracted from the explanted heart of a patient (FOR005) and consist of 115 residues, mainly from the LC variable domain. The fibril structures imply that a 180° rotation around the disulfide bond and a major unfolding step are necessary for fibrils to form. The two fibril structures show highly similar fibril protein folds, differing in only a 12-residue segment. Remarkably, the two structures do not represent separate fibril morphologies, as they can co-exist at different z-axial positions within the same fibril. Our data imply the presence of structural breaks at the interface of the two structural forms.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lynn Radamaker ◽  
Julian Baur ◽  
Stefanie Huhn ◽  
Christian Haupt ◽  
Ute Hegenbart ◽  
...  

AbstractSystemic AL amyloidosis is a debilitating and potentially fatal disease that arises from the misfolding and fibrillation of immunoglobulin light chains (LCs). The disease is patient-specific with essentially each patient possessing a unique LC sequence. In this study, we present two ex vivo fibril structures of a λ3 LC. The fibrils were extracted from the explanted heart of a patient (FOR005) and consist of 115-residue fibril proteins, mainly from the LC variable domain. The fibril structures imply that a 180° rotation around the disulfide bond and a major unfolding step are necessary for fibrils to form. The two fibril structures show highly similar fibril protein folds, differing in only a 12-residue segment. Remarkably, the two structures do not represent separate fibril morphologies, as they can co-exist at different z-axial positions within the same fibril. Our data imply the presence of structural breaks at the interface of the two structural forms.


Hemato ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 505-514
Author(s):  
Christian Haupt

The formation and deposition of fibrils derived from immunglobulin light chains is a hallmark of systemic AL amyloidosis. A particularly remarkable feature of the disease is the diversity and complexity in pathophysiology and clinical manifestations. This is related to the variability of immunoglobulins, as virtually every patient has a variety of mutations resulting in their own unique AL protein and thus a unique fibril deposited in the body. Here, I review recent biochemical and biophysical studies that have expanded our knowledge on how versatile the structure of AL fibrils in patients is and highlight their implications for the molecular mechanism of fibril formation in AL amyloidosis.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tanurup Das ◽  
Abhimanyu Harshey ◽  
Ankit Srivastava ◽  
Kriti Nigam ◽  
Vijay Kumar Yadav ◽  
...  

AbstractThe ex-vivo biochemical changes of different body fluids also referred as aging of fluids are potential marker for the estimation of Time since deposition. Infrared spectroscopy has great potential to reveal the biochemical changes in these fluids as previously reported by several researchers. The present study is focused to analyze the spectral changes in the ATR-FTIR spectra of three body fluids, commonly encountered in violent crimes i.e., semen, saliva, and urine as they dry out. The whole analytical timeline is divided into relatively slow phase I due to the major contribution of water and faster Phase II due to significant evaporation of water. Two spectral regions i.e., 3200–3400 cm−1 and 1600–1000 cm−1 are the major contributors to the spectra of these fluids. Several peaks in the spectral region between 1600 and 1000 cm−1 showed highly significant regression equation with a higher coefficient of determination values in Phase II in contrary to the slow passing Phase I. Principal component and Partial Least Square Regression analysis are the two chemometric tool used to estimate the time since deposition of the aforesaid fluids as they dry out. Additionally, this study potentially estimates the time since deposition of an offense from the aging of the body fluids at the early stages after its occurrence as well as works as the precursor for further studies on an extended timeframe.


2021 ◽  
Vol 22 (10) ◽  
pp. 5148
Author(s):  
Karin Enderle ◽  
Martin Dinkel ◽  
Eva-Maria Spath ◽  
Benjamin Schmid ◽  
Sebastian Zundler ◽  
...  

Intraepithelial lymphocytes (IEL) are widely distributed within the small intestinal epithelial cell (IEC) layer and represent one of the largest T cell pools of the body. While implicated in the pathogenesis of intestinal inflammation, detailed insight especially into the cellular cross-talk between IELs and IECs is largely missing in part due to lacking methodologies to monitor this interaction. To overcome this shortcoming, we employed and validated a murine IEL-IEC (organoids) ex vivo co-culture model system. Using livecell imaging we established a protocol to visualize and quantify the spatio-temporal migratory behavior of IELs within organoids over time. Applying this methodology, we found that IELs lacking CD103 (i.e., integrin alpha E, ITGAE) surface expression usually functioning as a retention receptor for IELs through binding to E-cadherin (CD324) expressing IECs displayed aberrant mobility and migration patterns. Specifically, CD103 deficiency affected the ability of IELs to migrate and reduced their speed during crawling within organoids. In summary, we report a new technology to monitor and quantitatively assess especially migratory characteristics of IELs communicating with IEC ex vivo. This approach is hence readily applicable to study the effects of targeted therapeutic interventions on IEL-IEC cross-talk.


Blood ◽  
2008 ◽  
Vol 111 (3) ◽  
pp. 1524-1533 ◽  
Author(s):  
Fiona Murray ◽  
Nikos Darzentas ◽  
Anastasia Hadzidimitriou ◽  
Gerard Tobin ◽  
Myriam Boudjogra ◽  
...  

Abstract Somatic hypermutation (SHM) features in a series of 1967 immunoglobulin heavy chain gene (IGH) rearrangements obtained from patients with chronic lymphocytic leukemia (CLL) were examined and compared with IGH sequences from non-CLL B cells available in public databases. SHM analysis was performed for all 1290 CLL sequences in this cohort with less than 100% identity to germ line. At the cohort level, SHM patterns were typical of a canonical SHM process. However, important differences emerged from the analysis of certain subgroups of CLL sequences defined by: (1) IGHV gene usage, (2) presence of stereotyped heavy chain complementarity-determining region 3 (HCDR3) sequences, and (3) mutational load. Recurrent, “stereotyped” amino acid changes occurred across the entire IGHV region in CLL subsets carrying stereotyped HCDR3 sequences, especially those expressing the IGHV3-21 and IGHV4-34 genes. These mutations are underrepresented among non-CLL sequences and thus can be considered as CLL-biased. Furthermore, it was shown that even a low level of mutations may be functionally relevant, given that stereotyped amino acid changes can be found in subsets of minimally mutated cases. The precise targeting and distinctive features of somatic hypermutation (SHM) in selected subgroups of CLL patients provide further evidence for selection by specific antigenic element(s).


Genome ◽  
1989 ◽  
Vol 31 (1) ◽  
pp. 422-425 ◽  
Author(s):  
Reinhard Schuh ◽  
Herbert Jäckle

The conventional technique for assigning a particular genetic function to a cloned transcription unit has relied on the rescue of the mutant phenotype by germ line transformation. An alternative approach is to mimic a mutant phenotype by the use of antisense RNA injections to produce phenocopies. This approach has been successfully used to identify genes involved in early pattern forming processes in the Drosophila embryo. At the time when antisense RNA is injected, the embryo develops as a syncytium composed of about 5000 nuclei which share a common cytoplasm. The gene interactions required to establish the body plan occur before cellularization at the blastoderm stage. Thus the nuclei and their exported transcripts are accessible to the injected antisense RNA. The antisense RNA interferes with the endogenous RNA by an as yet unidentified mechanism. The extent of interference is only partial and produces phenocopies with characteristics of weak mutant alleles. In our lab and others, this approach has been successfully used to identify several genes required for normal Drosophila pattern formation.Key words: Drosophila segmentation, phenocopy, antisense RNA, Krüppel gene.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Thomas Heerde ◽  
Matthies Rennegarbe ◽  
Alexander Biedermann ◽  
Dilan Savran ◽  
Peter B. Pfeiffer ◽  
...  

AbstractSeveral studies showed that seeding of solutions of monomeric fibril proteins with ex vivo amyloid fibrils accelerated the kinetics of fibril formation in vitro but did not necessarily replicate the seed structure. In this research we use cryo-electron microscopy and other methods to analyze the ability of serum amyloid A (SAA)1.1-derived amyloid fibrils, purified from systemic AA amyloidosis tissue, to seed solutions of recombinant SAA1.1 protein. We show that 98% of the seeded fibrils remodel the full fibril structure of the main ex vivo fibril morphology, which we used for seeding, while they are notably different from unseeded in vitro fibrils. The seeded fibrils show a similar proteinase K resistance as ex vivo fibrils and are substantially more stable to proteolytic digestion than unseeded in vitro fibrils. Our data support the view that the fibril morphology contributes to determining proteolytic stability and that pathogenic amyloid fibrils arise from proteolytic selection.


Sign in / Sign up

Export Citation Format

Share Document