scholarly journals Revealing nano-scale lattice distortions in implanted material with 3D Bragg ptychography

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peng Li ◽  
Nicholas W. Phillips ◽  
Steven Leake ◽  
Marc Allain ◽  
Felix Hofmann ◽  
...  

AbstractSmall ion-irradiation-induced defects can dramatically alter material properties and speed up degradation. Unfortunately, most of the defects irradiation creates are below the visibility limit of state-of-the-art microscopy. As such, our understanding of their impact is largely based on simulations with major unknowns. Here we present an x-ray crystalline microscopy approach, able to image with high sensitivity, nano-scale 3D resolution and extended field of view, the lattice strains and tilts in crystalline materials. Using this enhanced Bragg ptychography tool, we study the damage helium-ion-irradiation produces in tungsten, revealing a series of crystalline details in the 3D sample. Our results lead to the conclusions that few-atom-large ‘invisible’ defects are likely isotropic in orientation and homogeneously distributed. A partially defect-denuded region is observed close to a grain boundary. These findings open up exciting perspectives for the modelling of irradiation damage and the detailed analysis of crystalline properties in complex materials.

2018 ◽  
Vol 14 ◽  
pp. 42
Author(s):  
Václav Šísl ◽  
Martin Ševeček

There is a strong motivation for using ion beams to imitate neutron irradiation damage, mainly in order to reduce costs and time demands linked to neutron irradiation experiments. The long-term goal of the authors is to create an ion irradiation methodology, which could be employed in the development process of innovative nuclear fuel materials. This methodology will be based on combining of a set of ion beams in such a way that the final distribution of irradiation-induced defects in the material structure is similar to the one which would have been introduced by neutrons in a nuclear reactor. The first part of the methodology is represented by an optimization tool described here. The tool uses a third party Monte Carlo code SRIM to simulate ion transport in a target and to determine the distribution of radiation damage. Subsequently, a custom genetic optimization algorithm is applied to a set of damage distribution profiles to find their optimal combination.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2639 ◽  
Author(s):  
Wenfan Yang ◽  
Jingyu Pang ◽  
Shijian Zheng ◽  
Jian Wang ◽  
Xinghang Zhang ◽  
...  

In advanced fission and fusion reactors, structural materials suffer from high dose irradiation by energetic particles and are subject to severe microstructure damage. He atoms, as a byproduct of the (n, α) transmutation reaction, could accumulate to form deleterious cavities, which accelerate radiation-induced embrittlement, swelling and surface deterioration, ultimately degrade the service lifetime of reactor materials. Extensive studies have been performed to explore the strategies that can mitigate He ion irradiation damage. Recently, nanostructured materials have received broad attention because they contain abundant interfaces that are efficient sinks for radiation-induced defects. In this review, we summarize and analyze the current understandings on interface effects on He ion irradiation in nanostructured materials. Some key challenges and research directions are highlighted for studying the interface effects on radiation damage in nanostructured materials.


Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 733 ◽  
Author(s):  
Wenjuan Yao ◽  
Lei Fan

One of the miraculous functions of graphene is to use its defects to alter the material properties of graphene composites and, thereby, expand the application of graphene in other fields. In this paper, various defects have been created in graphene by using ion irradiation. Defective graphene is sandwiched between two copper layers. A numerical model of Graphene/Copper layered composites after irradiation damage was established by the molecular dynamics method. The effects of ion irradiation and temperature coupling on defective graphene/copper composites were studied. The results show that there are a lot of empty defects in graphene after irradiation injury, which will produce more incomplete bonding. Although the bonds between carbon atoms can be weakened, defective graphene still enhances the mechanical properties of pure copper. At the same time, the location and arrangement of defects have a great influence on the mechanical stability of graphene/copper composites, and the arrangement of empty defects has different effects on deformation behavior and the stress transfer mechanism. It can be concluded that the defects formed by radiation have an effect on the physical properties of two-dimensional materials. Therefore, irradiation technology can be used to artificially control the formation of defects, and then make appropriate adjustments to their properties. This can not only optimize the radiation resistance and mechanical properties of nuclear materials, but also expand the application of graphene in electronic devices and other fields.


Author(s):  
H. Watanabe ◽  
B. Kabius ◽  
B. Roas ◽  
K. Urban

Recently it was reported that the critical current density(Jc) of YBa2Cu2O7, in the presence of magnetic field, is enhanced by ion irradiation. The enhancement is thought to be due to the pinning of the magnetic flux lines by radiation-induced defects or by structural disorder. The aim of the present study was to understand the fundamental mechanisms of the defect formation in association with the pinning effect in YBa2Cu3O7 by means of high-resolution electron microscopy(HRTEM).The YBa2Cu3O7 specimens were prepared by laser ablation in an insitu process. During deposition, a substrate temperature and oxygen atmosphere were kept at about 1073 K and 0.4 mbar, respectively. In this way high quality epitaxially films can be obtained with the caxis parallel to the <100 > SrTiO3 substrate normal. The specimens were irradiated at a temperature of 77 K with 173 MeV Xe ions up to a dose of 3.0 × 1016 m−2.


2016 ◽  
Vol 105 ◽  
pp. 429-437 ◽  
Author(s):  
P. Liu ◽  
Y. Zhang ◽  
H. Xue ◽  
K. Jin ◽  
M.L. Crespillo ◽  
...  

MRS Advances ◽  
2016 ◽  
Vol 1 (42) ◽  
pp. 2887-2892
Author(s):  
Brittany Muntifering ◽  
Jianmin Qu ◽  
Khalid Hattar

ABSTRACTThe formation and stability of radiation-induced defects in structural materials in reactor environments significantly effects their integrity and performance. Hydrogen, which may be present in significant quantities in future reactors, may play an important role in defect evolution. To characterize the effect of hydrogen on cascade damage evolution, in-situ TEM self-ion irradiation and deuterium implantation was performed, both sequentially and concurrently, on nickel. This paper presents preliminary results characterizing dislocation loop formation and evolution during room temperature deuterium implantation and self-ion irradiation and the consequence of the sequence of irradiation. Hydrogen isotope implantation at room temperature appears to have little or no effect on the final dislocation loop structures that result from self-ion irradiation, regardless of the sequence of irradiation. Tilting experiments emphasize the importance of precise two-beam conditions for characterizing defect size and structure.


2019 ◽  
Vol 39 (4) ◽  
pp. 726-734 ◽  
Author(s):  
Guillaume Victor ◽  
Yves Pipon ◽  
Nathalie Moncoffre ◽  
Nicolas Bérerd ◽  
Claude Esnouf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document