scholarly journals Experimental realization of a 3D random hopping model

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Carsten Lippe ◽  
Tanita Klas ◽  
Jana Bender ◽  
Patrick Mischke ◽  
Thomas Niederprüm ◽  
...  

AbstractScientific advance is often driven by identifying conceptually simple models underlying complex phenomena. This process commonly ignores imperfections which, however, might give rise to non-trivial collective behavior. For example, already a small amount of disorder can dramatically change the transport properties of a system compared to the underlying simple model. While systems with disordered potentials were already studied in detail, experimental investigations on systems with disordered hopping are still in its infancy. To this end, we experimentally study a dipole–dipole-interacting three-dimensional Rydberg system and map it onto a simple XY model with random couplings by spectroscopic evidence. We discuss the localization–delocalization crossover emerging in the model and present experimental signatures of it. Our results demonstrate that Rydberg systems are a useful platform to study random hopping models with the ability to access the microscopic degrees of freedom. This will allow to study transport processes and localization phenomena in random hopping models with a high level of control.

1999 ◽  
Vol 10 (01) ◽  
pp. 95-113 ◽  
Author(s):  
JOSÉ D. MUÑOZ ◽  
HANS J. HERRMANN

We propose a way of implementing the Broad Histogram Monte Carlo method to systems with continuous degrees of freedom, and we apply these ideas to investigate the three-dimensional XY-model with periodic boundary conditions. We have found an excellent agreement between our method and traditional Metropolis results for the energy, the magnetization, the specific heat and the magnetic susceptibility on a very large temperature range. For the calculation of these quantities in the temperature range 0.7<T<4.7 our method took less CPU time than the Metropolis simulations for 16 temperature points in that temperature range. Furthermore, it calculates the whole temperature range 1.2<T<4.7 using only 2.2 times more computer effort than the Histogram Monte Carlo method for the range 2.1<T<2.2. Our way of treatment is general; it can also be applied to other systems with continuous degrees of freedom.


2021 ◽  
Vol 7 (9) ◽  
pp. eabc5266
Author(s):  
Max Ehrhardt ◽  
Robert Keil ◽  
Lukas J. Maczewsky ◽  
Christoph Dittel ◽  
Matthias Heinrich ◽  
...  

Graph representations are a powerful concept for solving complex problems across natural science, as patterns of connectivity can give rise to a multitude of emergent phenomena. Graph-based approaches have proven particularly fruitful in quantum communication and quantum search algorithms in highly branched quantum networks. Here, we introduce a previously unidentified paradigm for the direct experimental realization of excitation dynamics associated with three-dimensional networks by exploiting the hybrid action of spatial and polarization degrees of freedom of photon pairs in complex waveguide circuits with tailored birefringence. This testbed for the experimental exploration of multiparticle quantum walks on complex, highly connected graphs paves the way toward exploiting the applicative potential of fermionic dynamics in integrated quantum photonics.


Author(s):  
Michelle Carvalho de Sales ◽  
Rafael Maluza Flores ◽  
Julianny da Silva Guimaraes ◽  
Gustavo Vargas da Silva Salomao ◽  
Tamara Kerber Tedesco ◽  
...  

Dental surgeons need in-depth knowledge of the bone tissue status and gingival morphology of atrophic maxillae. The aim of this study is to describe preoperative virtual planning of placement of five implants and to compare the plan with the actual surgical results. Three-dimensional planning of rehabilitation using software programs enables surgical guides to be specially designed for the implant site and manufactured using 3D printing. A patient with five teeth missing was selected for this study. The patient’s maxillary region was scanned with CBCT and a cast model was produced. After virtual planning using ImplantViewer, five implants were placed using a printed surgical guide. Two weeks after the surgical procedure, the patient underwent another CBCT scan of the maxilla. Statistically significant differences were detected between the virtually planned positions and the actual positions of the implants, with a mean deviation of 0.36 mm in the cervical region and 0.7 mm in the apical region. The surgical technique used enables more accurate procedures when compared to the conventional technique. Implants can be better positioned, with a high level of predictability, reducing both operating time and patient discomfort.


Author(s):  
Yuhong Liu ◽  
Anthony Dutoi

<div> <div>A shortcoming of presently available fragment-based methods is that electron correlation (if included) is described at the level of individual electrons, resulting in many redundant evaluations of the electronic relaxations associated with any given fluctuation. A generalized variant of coupled-cluster (CC) theory is described, wherein the degrees of freedom are fluctuations of fragments between internally correlated states. The effects of intra-fragment correlation on the inter-fragment interaction is pre-computed and permanently folded into the effective Hamiltonian. This article provides a high-level description of the CC variant, establishing some useful notation, and it demonstrates the advantage of the proposed paradigm numerically on model systems. A companion article shows that the electronic Hamiltonian of real systems may always be cast in the form demanded. This framework opens a promising path to build finely tunable systematically improvable methods to capture precise properties of systems interacting with a large number of other systems. </div> </div>


2017 ◽  
Author(s):  
Yuhong Liu ◽  
Anthony Dutoi

<div> <div>A shortcoming of presently available fragment-based methods is that electron correlation (if included) is described at the level of individual electrons, resulting in many redundant evaluations of the electronic relaxations associated with any given fluctuation. A generalized variant of coupled-cluster (CC) theory is described, wherein the degrees of freedom are fluctuations of fragments between internally correlated states. The effects of intra-fragment correlation on the inter-fragment interaction is pre-computed and permanently folded into the effective Hamiltonian. This article provides a high-level description of the CC variant, establishing some useful notation, and it demonstrates the advantage of the proposed paradigm numerically on model systems. A companion article shows that the electronic Hamiltonian of real systems may always be cast in the form demanded. This framework opens a promising path to build finely tunable systematically improvable methods to capture precise properties of systems interacting with a large number of other systems. </div> </div>


1982 ◽  
Vol 14 (3) ◽  
pp. 33-39
Author(s):  
C Y Kuo

An existing, three-dimensional, Eulerian-Lagrangian finite-difference model was modified and used to examine the far-field transport processes of dumped sewage sludge in the New York Bight. Both in situ and laboratory data were utilized in an attempt to approximate model inputs such as mean current speed, vertical and horizontal diffusion coefficients, particle size distributions, and specific gravities. Concentrations of the sludge near the sea surface predicted from the computer model were compared qualitatively with those remotely sensed.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 444
Author(s):  
Guoning Si ◽  
Liangying Sun ◽  
Zhuo Zhang ◽  
Xuping Zhang

This paper presents the design, fabrication, and testing of a novel three-dimensional (3D) three-fingered electrothermal microgripper with multiple degrees of freedom (multi DOFs). Each finger of the microgripper is composed of a V-shaped electrothermal actuator providing one DOF, and a 3D U-shaped electrothermal actuator offering two DOFs in the plane perpendicular to the movement of the V-shaped actuator. As a result, each finger possesses 3D mobilities with three DOFs. Each beam of the actuators is heated externally with the polyimide film. The durability of the polyimide film is tested under different voltages. The static and dynamic properties of the finger are also tested. Experiments show that not only can the microgripper pick and place microobjects, such as micro balls and even highly deformable zebrafish embryos, but can also rotate them in 3D space.


2021 ◽  
pp. 0308518X2199781
Author(s):  
Xinyue Luo ◽  
Mingxing Chen

The nodes and links in urban networks are usually presented in a two-dimensional(2D) view. The co-occurrence of nodes and links can also be realized from a three-dimensional(3D) perspective to make the characteristics of urban network more intuitively revealed. Our result shows that the external connections of high-level cities are mainly affected by the level of cities(nodes) and less affected by geographical distance, while medium-level cities are affected by the interaction of the level of cities(nodes) and geographical distance. The external connections of low-level cities are greatly restricted by geographical distance.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 580
Author(s):  
Anna Lena Emonds ◽  
Katja Mombaur

As a whole, human sprinting seems to be a completely periodic and symmetrical motion. This view is changed when a person runs with a running-specific prosthesis after a unilateral amputation. The aim of our study is to investigate differences and similarities between unilateral below-knee amputee and non-amputee sprinters—especially with regard to whether asymmetry is a distracting factor for sprint performance. We established three-dimensional rigid multibody models of one unilateral transtibial amputee athlete and for reference purposes of three non-amputee athletes. They consist of 16 bodies (head, ipper, middle and lower trunk, upper and lower arms, hands, thighs, shanks and feet/running specific prosthesis) with 30 or 31 degrees of freedom (DOFs) for the amputee and the non-amputee athletes, respectively. Six DOFs are associated with the floating base, the remaining ones are rotational DOFs. The internal joints are equipped with torque actuators except for the prosthetic ankle joint. To model the spring-like properties of the prosthesis, the actuator is replaced by a linear spring-damper system. We consider a pair of steps which is modeled as a multiphase problem with each step consisting of a flight, touchdown and single-leg contact phase. Each phase is described by its own set of differential equations. By combining motion capture recordings with a least squares optimal control problem formulation including constraints, we reconstructed the dynamics of one sprinting trial for each athlete. The results show that even the non-amputee athletes showed less symmetrical sprinting than expected when examined on an individual level. Nevertheless, the asymmetry is much more pronounced in the amputee athlete. The amputee athlete applies larger torques in the arm and trunk joints to compensate the asymmetry and experiences a destabilizing influence of the trunk movement. Hence, the inter-limb asymmetry of the amputee has a significant effect on the control of the sprint movement and the maintenance of an upright body position.


2021 ◽  
Vol 22 (6) ◽  
pp. 3241
Author(s):  
Raudah Lazim ◽  
Donghyuk Suh ◽  
Jai Woo Lee ◽  
Thi Ngoc Lan Vu ◽  
Sanghee Yoon ◽  
...  

G protein-coupled receptor (GPCR) oligomerization, while contentious, continues to attract the attention of researchers. Numerous experimental investigations have validated the presence of GPCR dimers, and the relevance of dimerization in the effectuation of physiological functions intensifies the attractiveness of this concept as a potential therapeutic target. GPCRs, as a single entity, have been the main source of scrutiny for drug design objectives for multiple diseases such as cancer, inflammation, cardiac, and respiratory diseases. The existence of dimers broadens the research scope of GPCR functions, revealing new signaling pathways that can be targeted for disease pathogenesis that have not previously been reported when GPCRs were only viewed in their monomeric form. This review will highlight several aspects of GPCR dimerization, which include a summary of the structural elucidation of the allosteric modulation of class C GPCR activation offered through recent solutions to the three-dimensional, full-length structures of metabotropic glutamate receptor and γ-aminobutyric acid B receptor as well as the role of dimerization in the modification of GPCR function and allostery. With the growing influence of computational methods in the study of GPCRs, we will also be reviewing recent computational tools that have been utilized to map protein–protein interactions (PPI).


Sign in / Sign up

Export Citation Format

Share Document