scholarly journals GPCR voltage dependence controls neuronal plasticity and behavior

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eyal Rozenfeld ◽  
Merav Tauber ◽  
Yair Ben-Chaim ◽  
Moshe Parnas

AbstractG-protein coupled receptors (GPCRs) play a paramount role in diverse brain functions. Almost 20 years ago, GPCR activity was shown to be regulated by membrane potential in vitro, but whether the voltage dependence of GPCRs contributes to neuronal coding and behavioral output under physiological conditions in vivo has never been demonstrated. Here we show that muscarinic GPCR mediated neuronal potentiation in vivo is voltage dependent. This voltage dependent potentiation is abolished in mutant animals expressing a voltage independent receptor. Depolarization alone, without a muscarinic agonist, results in a nicotinic ionotropic receptor potentiation that is mediated by muscarinic receptor voltage dependency. Finally, muscarinic receptor voltage independence causes a strong behavioral effect of increased odor habituation. Together, this study identifies a physiological role for the voltage dependency of GPCRs by demonstrating crucial involvement of GPCR voltage dependence in neuronal plasticity and behavior. Thus, this study suggests that GPCR voltage dependency plays a role in many diverse neuronal functions including learning and memory.

1965 ◽  
Vol 208 (5) ◽  
pp. 1006-1008 ◽  
Author(s):  
John C. Lamb ◽  
James P. Isaacs ◽  
Walter L. Bloom ◽  
Don S. Harmer

The in vitro coagulation of dog whole blood and the in vivo thrombosis of blood vessels by means of an electric current were found to be voltage-dependent phenomena. The critical potential difference below which they do not occur appears to be 2.0 v. Electrolytic decomposition potentials of several salt- and protein-containing solutions between smooth Pt electrodes were found to cluster between 2.0 and 2.3 v as determined by their voltage-current curves. Below 2.0 v whole blood was not found to deposit as a coagulum on the positive electrode even when the amount of charge allowed to flow was greater than that which caused coagulation at higher voltages. In vivo electrical thrombosis was found to have similar voltage dependence in femoral vein pairs in the dog. Those at 2.5 v thrombosed whereas those at 2.0 did not—even though the current was the same in each instance. Attention is called to the fact that a change in transmural potential cannot then be the initiating factor of "normal" thrombosis.


2020 ◽  
Author(s):  
L Pérez-Sisqués ◽  
N Martín-Flores ◽  
M Masana ◽  
J Solana ◽  
A Llobet ◽  
...  

ABSTRACTRTP801/REDD1 is a stress-regulated protein whose upregulation is necessary and sufficient to trigger neuronal death in in vitro and in vivo models of Parkinson’s and Huntington’s diseases and is up regulated in compromised neurons in human postmortem brains of both neurodegenerative disorders. Indeed, in both Parkinson’s and Huntington’s disease mouse models, RTP801 knockdown alleviates motor-learning deficits.Here, we investigated the physiological role of RTP801 in neuronal plasticity. RTP801 is found in rat, mouse and human synapses. The absence of RTP801 enhanced excitatory synaptic transmission in both neuronal cultures and brain slices from RTP801 knock-out (KO) mice. Indeed, RTP801 KO mice showed improved motor learning, which correlated with lower spine density but increased basal filopodia and mushroom spines in the motor cortex layer V. This paralleled with higher levels of synaptosomal GluA1 and TrkB receptors in homogenates derived from KO mice motor cortex, proteins that are associated with synaptic strengthening. Altogether, these results indicate that RTP801 has an important role modulating neuronal plasticity in motor learning.


2014 ◽  
Vol 144 (4) ◽  
pp. 297-309 ◽  
Author(s):  
Dongil Keum ◽  
Christina Baek ◽  
Dong-Il Kim ◽  
Hae-Jin Kweon ◽  
Byung-Chang Suh

G protein–coupled receptors (GPCRs) signal through molecular messengers, such as Gβγ, Ca2+, and phosphatidylinositol 4,5-bisphosphate (PIP2), to modulate N-type voltage-gated Ca2+ (CaV2.2) channels, playing a crucial role in regulating synaptic transmission. However, the cellular pathways through which GqPCRs inhibit CaV2.2 channel current are not completely understood. Here, we report that the location of CaV β subunits is key to determining the voltage dependence of CaV2.2 channel modulation by GqPCRs. Application of the muscarinic agonist oxotremorine-M to tsA-201 cells expressing M1 receptors, together with CaV N-type α1B, α2δ1, and membrane-localized β2a subunits, shifted the current-voltage relationship for CaV2.2 activation 5 mV to the right and slowed current activation. Muscarinic suppression of CaV2.2 activity was relieved by strong depolarizing prepulses. Moreover, when the C terminus of β-adrenergic receptor kinase (which binds Gβγ) was coexpressed with N-type channels, inhibition of CaV2.2 current after M1 receptor activation was markedly reduced and delayed, whereas the delay between PIP2 hydrolysis and inhibition of CaV2.2 current was decreased. When the Gβγ-insensitive CaV2.2 α1C-1B chimera was expressed, voltage-dependent inhibition of calcium current was virtually abolished, suggesting that M1 receptors act through Gβγ to inhibit CaV2.2 channels bearing membrane-localized CaV β2a subunits. Expression of cytosolic β subunits such as β2b and β3, as well as the palmitoylation-negative mutant β2a(C3,4S), reduced the voltage dependence of M1 muscarinic inhibition of CaV2.2 channels, whereas it increased inhibition mediated by PIP2 depletion. Together, our results indicate that, with membrane-localized CaV β subunits, CaV2.2 channels are subject to Gβγ-mediated voltage-dependent inhibition, whereas cytosol-localized β subunits confer more effective PIP2-mediated voltage-independent regulation. Thus, the voltage dependence of GqPCR regulation of calcium channels can be determined by the location of isotype-specific CaV β subunits.


1988 ◽  
Vol 91 (4) ◽  
pp. 469-493 ◽  
Author(s):  
G E Breitwieser ◽  
G Szabo

The role of a guanine nucleotide-binding protein (Gk) in the coupling between muscarinic receptor activation and opening of an inwardly rectifying K+ channel [IK(M)] was examined in cardiac atrial myocytes, using hydrolysis-resistant GTP analogues. In the absence of muscarinic agonist, GTP analogues produced a membrane current characteristic of IK(M). The initial rate of appearance of this receptor-independent IK(M) was measured for the various analogues in order to explore the kinetic properties of IK(M) activation. We found that IK(M) activation is controlled solely by the intracellular analogue/GTP ratio and not by the absolute concentrations of the nucleotides. Analogues competed with GTP for binding to Gk with the following relative affinities: GTP gamma S greater than GTP greater than GppNHp greater than GppCH2p. At sufficiently high intracellular concentrations, however, all GTP analogues produced the same rate of IK(M) activation. This analogue-independent limiting rate is likely to correspond to the rate of GDP release from inactive, GDP-bound Gk. Muscarinic receptor stimulation by nanomolar concentrations of acetylcholine (ACh), which do not elicit IK(M) under control conditions, catalyzed IK(M) activation in the presence of GTP analogues. The rate of Gk activation by ACh (kACh) was found to be described by the simple relationship kACh = 8.4 X 10(8) min-1 M-1.[ACh] + 0.44 min-1, the first term of which presumably reflects the agonist-catalyzed rate of GDP release from the Gk.GDP complex, while the second term corresponds to the basal rate of receptor-independent GDP release. Combined with the estimated K0.5 of the IK(M)-[ACh] dose-effect relationship, 160 nM, this result also allowed us to estimate the rate of Gk.GTP hydrolysis, kcat, to be near 135 min-1. These results provide, for the first time, a quantitative description of the salient features of G-protein function in vivo.


2000 ◽  
Vol 279 (4) ◽  
pp. C1024-C1033 ◽  
Author(s):  
Bin-Xian Zhang ◽  
Chih-Ko Yeh ◽  
Tazuko K. Hymer ◽  
Meyer D. Lifschitz ◽  
Michael S. Katz

The effects of epidermal growth factor (EGF) on intracellular calcium ([Ca2+]i) responses to the muscarinic agonist carbachol were studied in a human salivary cell line (HSY). Carbachol (10−4 M)-stimulated [Ca2+]i mobilization was inhibited by 40% after 48-h treatment with 5 × 10−10 M EGF. EGF also reduced carbachol-induced [Ca2+]i in Ca2+-free medium and Ca2+ influx following repletion of extracellular Ca2+. Under Ca2+-free conditions, thapsigargin, an inhibitor of Ca2+ uptake to internal stores, induced similar [Ca2+]i signals in control and EGF-treated cells, indicating that internal Ca2+ stores were unaffected by EGF; however, in cells exposed to thapsigargin, Ca2+influx following Ca2+ repletion was reduced by EGF. Muscarinic receptor density, assessed by binding of the muscarinic receptor antagonistl-[benzilic-4,4′-3HCN]quinuclidinyl benzilate ([3H]QNB), was decreased by 20% after EGF treatment. Inhibition of the carbachol response by EGF was not altered by phorbol ester-induced downregulation of protein kinase C (PKC) but was enhanced upon PKC activation by a diacylglycerol analog. Phosphorylation of mitogen-activated protein kinase (MAP kinase) and inhibition of the carbachol response by EGF were both blocked by the MAP kinase pathway inhibitor PD-98059. The results suggest that EGF decreases carbachol-induced Ca2+ release from internal stores and also exerts a direct inhibitory action on Ca2+ influx. A decline in muscarinic receptor density may contribute to EGF inhibition of carbachol responsiveness. The inhibitory effect of EGF is mediated by the MAP kinase pathway and is potentiated by a distinct modulatory cascade involving activation of PKC. EGF may play a physiological role in regulating muscarinic receptor-stimulated salivary secretion.


1996 ◽  
Vol 75 (2) ◽  
pp. 660-677 ◽  
Author(s):  
J. A. Kozak ◽  
K. R. Weiss ◽  
V. Brezina

1. This work continues our examination of the electrophysiology and contractions of single fibers dissociated from a widely studied molluscan muscle, the accessory radula closer (ARC) muscle of Aplysia californica, aimed at understanding its excitation-contraction mechanisms and their modulation. 2. Extensive previous work has characterized a number of basal ion currents present in the fibers and effects of transmitters and peptide cotransmitters that modulate ARC-muscle contractions in vivo. Here we use current clamp, voltage clamp, and contraction measurements to examine the actions of acetylcholine (ACh), the transmitter that induces the contractions. 3. As in the whole ARC muscle, ACh depolarizes unclamped fibers maximally to about -25 mV where, no matter how much ACh is applied, the depolarization saturates. 4. The underlying ACh-activated current is in fact the sum of two quite distinct components, IACh,cat and IACh,Cl. 5. IACh,cat is itself a mixed current carried by cations (physiologically mainly by Na+, but to a significant degree also by Ca2+), reverses near +20 mV, rectifies inwardly, exhibits prominent voltage-dependent kinetics of activation with hyperpolarization, and is selectively blocked by hexamethonium. 6. In contrast, IACh,Cl is carried by Cl-, reverses near -60 mV, exhibits little rectification or voltage-dependent kinetics, is activated selectively by suberyldicholine, and is blocked by alpha-bungarotoxin. 7. Both currents activate fast when ACh is applied, desensitize relatively slowly in its presence, then deactivate fast. Both currents are activated at similar ACh concentrations, half-maximally at approximately 10 microM. Both currents also are activated by carbachol and propionylcholine and blocked by d-tubocurarine, bicuculline and paraoxon. Picrotoxin and atropine block IACh,cat better, 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS), 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), and anthracene 9-carboxylic acid IACh,Cl better. 8. The two currents are virtually identical to ACh-activated cationic (Na) and Cl currents that are ubiquitous in molluscan neurons. As has been proposed for the neuronal currents, IACh,cat resembles vertebrate neuronal nicotinic ACh-receptor (nAChR) currents, whereas IACh,Cl resembles vertebrate skeletal muscle nAChR currents. 9. Functionally, we believe that IACh,cat serves primarily to depolarize the ARC muscle to open voltage-activated L-type Ca channels, allow Ca2+ influx, and initiate contraction. Physiologically significant Ca2+ may also enter through the ACh,cat channels themselves. 10. By superimposing on IACh,cat, IACh,Cl brings the reversal potential of the combined current to around -25 mV and thereby sets a relatively negative upper limit to the ACh-induced depolarization. We propose that this is its physiological role. By limiting the depolarization, IACh,Cl limits the degree of activation of the Ca current and Ca2+ influx, and so prevents excessive contraction. More importantly, it moderates the voltage during contraction to a range where small voltage changes can finely grade contraction amplitude in this nonspiking muscle. 11. Indeed, in contraction experiments on the single fibers, there is an inverse correlation between the IACh,Cl/IACh,cat ratio and the magnitude of the ACh-induced depolarization and contraction. Furthermore, increased pharmacological activation of IACh,Cl depresses, and block of IACh,Cl enhances, both the depolarization and contraction. 12. Obligatory simultaneous coactivation of IACh,cat and IACh,Cl in the ARC muscle may be part of a peripheral control mechanism that automatically keeps the size of its contractions within behaviorally optimal limits.


2010 ◽  
Vol 135 (5) ◽  
pp. 495-508 ◽  
Author(s):  
Harley T. Kurata ◽  
Emily A. Zhu ◽  
Colin G. Nichols

Polyamine block of inwardly rectifying potassium (Kir) channels underlies their steep voltage dependence observed in vivo. We have examined the potency, voltage dependence, and kinetics of spermine block in dimeric Kir2.1 constructs containing one nonreactive subunit and one cysteine-substituted subunit before and after modification by methanethiosulfonate (MTS) reagents. At position 169C (between the D172 “rectification controller” and the selectivity filter), modification by either 2-aminoethyl MTS (MTSEA) or 2-(trimethylammonium)ethyl MTS (MTSET) reduced the potency and voltage dependence of spermine block, consistent with this position overlapping the spermine binding site. At position 176C (between D172 and the M2 helix bundle crossing), modification by MTSEA also weakened spermine block. In contrast, MTSET modification of 176C dramatically slowed the kinetics of spermine unblock, with almost no effect on potency or voltage dependence. The data are consistent with MTSET modification of 176C introducing a localized barrier in the inner cavity, resulting in slower spermine entry into and exit from a “deep” binding site (likely between the D172 rectification controller and the selectivity filter), but leaving the spermine binding site mostly unaffected. These findings constrain the location of deep spermine binding that underlies steeply voltage-dependent block, and further suggest important chemical details of high affinity binding of spermine in Kir2.1 channels—the archetypal model of strong inward rectification.


2021 ◽  
Vol 22 (6) ◽  
pp. 3034
Author(s):  
Hayet Saidani ◽  
Marc Léonetti ◽  
Hanna Kmita ◽  
Fabrice Homblé

The voltage-dependent anion channel (VDAC) is the major pathway for metabolites and ions transport through the mitochondrial outer membrane. It can regulate the flow of solutes by switching to a low conductance state correlated with a selectivity reversal, or by a selectivity inversion of its open state. The later one was observed in non-plant VDACs and is poorly characterized. We aim at investigating the selectivity inversion of the open state using plant VDAC purified from Phaseolus coccineus (PcVDAC) to evaluate its physiological role. Our main findings are: (1) The VDAC selectivity inversion of the open state occurs in PcVDAC, (2) Ion concentration and stigmasterol affect the occurrence of the open state selectivity inversion and stigmasterol appears to interact directly with PcVDAC. Interestingly, electrophysiological data concerning the selectivity inversion of the PcVDAC open state suggests that the phenomenon probably does not have a significant physiological effect in vivo.


2002 ◽  
Vol 715 ◽  
Author(s):  
P. Louro ◽  
A. Fantoni ◽  
Yu. Vygranenko ◽  
M. Fernandes ◽  
M. Vieira

AbstractThe bias voltage dependent spectral response (with and without steady state bias light) and the current voltage dependence has been simulated and compared to experimentally obtained values. Results show that in the heterostructures the bias voltage influences differently the field and the diffusion part of the photocurrent. The interchange between primary and secondary photocurrent (i. e. between generator and load device operation) is explained by the interaction of the field and the diffusion components of the photocurrent. A field reversal that depends on the light bias conditions (wavelength and intensity) explains the photocurrent reversal. The field reversal leads to the collapse of the diode regime (primary photocurrent) launches surface recombination at the p-i and i-n interfaces which is responsible for a double-injection regime (secondary photocurrent). Considerations about conduction band offsets, electrical field profiles and inversion layers will be taken into account to explain the optical and voltage bias dependence of the spectral response.


Sign in / Sign up

Export Citation Format

Share Document