scholarly journals Mutations in Hcfc1 and Ronin result in an inborn error of cobalamin metabolism and ribosomopathy

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Tiffany Chern ◽  
Annita Achilleos ◽  
Xuefei Tong ◽  
Matthew C. Hill ◽  
Alexander B. Saltzman ◽  
...  

AbstractCombined methylmalonic acidemia and homocystinuria (cblC) is the most common inborn error of intracellular cobalamin metabolism and due to mutations in Methylmalonic Aciduria type C and Homocystinuria (MMACHC). Recently, mutations in the transcriptional regulators HCFC1 and RONIN (THAP11) were shown to result in cellular phenocopies of cblC. Since HCFC1/RONIN jointly regulate MMACHC, patients with mutations in these factors suffer from reduced MMACHC expression and exhibit a cblC-like disease. However, additional de-regulated genes and the resulting pathophysiology is unknown. Therefore, we have generated mouse models of this disease. In addition to exhibiting loss of Mmachc, metabolic perturbations, and developmental defects previously observed in cblC, we uncovered reduced expression of target genes that encode ribosome protein subunits. We also identified specific phenotypes that we ascribe to deregulation of ribosome biogenesis impacting normal translation during development. These findings identify HCFC1/RONIN as transcriptional regulators of ribosome biogenesis during development and their mutation results in complex syndromes exhibiting aspects of both cblC and ribosomopathies.

2021 ◽  
pp. ASN.2021010101
Author(s):  
Zhiheng Liu ◽  
Yunjing Liu ◽  
Lin Dang ◽  
Meijuan Geng ◽  
Yongzhan Sun ◽  
...  

Background Genome-wide mapping of transcription factor (TF) binding sites is essential to identify a TF's direct target genes in kidney development and diseases. However, due to the cellular complexity of the kidney and limited numbers of a given cell type, it has been challenging to determine the binding sites of a TF in vivo. cAMP-response element-binding protein (CREB) is phosphorylated and hyperactive in autosomal dominant polycystic kidney disease (ADPKD). We focus on CREB as an example to profile genomic loci bound by a TF and to identify its target genes using low numbers of specific kidney cells. Methods Cleavage under targets and release using nuclease (CUT&RUN) assays were performed with Dolichos biflorus agglutinin (DBA)-positive tubular epithelial cells from normal and ADPKD mouse kidneys. Pharmacological inhibition of CREB with 666-15 and genetic inhibition with A-CREB were undertaken using ADPKD mouse models. Results CUT&RUN to profile genome-wide distribution of phosphorylated CREB (p-CREB) indicated correlation of p-CREB binding with active histone modifications (H3K4me3 and H3K27ac) in cystic epithelial cells. Integrative analysis with CUT&RUN and RNA-sequencing revealed CREB direct targets, including genes involved in ribosome biogenesis and protein synthesis. Pharmacological and genetic inhibition of CREB suppressed cyst growth in ADPKD mouse models. Conclusions CREB promotes cystogenesis by activating ribosome biogenesis genes. CUT&RUN, coupled with transcriptomic analysis, enables interrogation of TF binding and identification of direct TF targets from a low number of specific kidney cells.


Author(s):  
Mona Hussein ◽  
Rehab Magdy

AbstractMicroRNAs (miRNAs) are a class of short, non-coding, regulatory RNA molecules that function as post transcriptional regulators of gene expression. Altered expression of multiple miRNAs was found to be extensively involved in the pathogenesis of different neurological disorders including Alzheimer’s disease, Parkinson’s disease, stroke, epilepsy, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington’s disease. miRNAs are implicated in the pathogenesis of excitotoxicity, apoptosis, oxidative stress, inflammation, neurogenesis, angiogenesis, and blood–brain barrier protection. Consequently, miRNAs can serve as biomarkers for different neurological disorders. In recent years, advances in the miRNA field led to identification of potentially novel prospects in the development of new therapies for incurable CNS disorders. MiRNA-based therapeutics include miRNA mimics and inhibitors that can decrease or increase the expression of target genes. Better understanding of the mechanisms by which miRNAs are implicated in the pathogenesis of neurological disorders may provide novel targets to researchers for innovative therapeutic strategies.


2020 ◽  
Author(s):  
Manisha Mandal ◽  
Shyamapada Mandal

Abstract The potential biomarkers in inflammatory bowel diseases (IBDs) were analyzed from GSE53867 dataset. Differentially expressed microRNAs (DEMs)-genes and protein-protein interaction networks were constructed, and hub genes selected using Cytoscape. Differentially expressed genes were analyzed for GO and Reactome-pathway. Seven DEMs were upregulated in Crohn's disease (CD), 4 downregulated in ulcerative colitis (UC), 8 upregulated and 2 downregulated in IBD. A 620, 2377, and 1821 target-genes were in CD, UC, and IBD, respectively. SOCS3, upregulated by miR-650, was hub gene in CD, induced by cytokines, through NFKB-signalling pathway to mediate ubiquitin-proteasomal degradation. CIRH1A, downregulated by miR-16, was hub gene of UC, acted by impairing ribosome-biogenesis. SKP2 and ASB1, up- and downregulated, by miR-142 and miR-665, respectively, were hub genes of IBD, induced cytokines through activation of TLR- and TNF-signalling pathways to mediate ubiquitin-proteasomal degradation. SOCS3, CIRH1A, SKP2 and ASB1 genes might serve as valuable biomarkers to differentiate CD, UC and IBD.


2016 ◽  
Vol 113 (42) ◽  
pp. 11967-11972 ◽  
Author(s):  
Pan Zhu ◽  
Yuqiu Wang ◽  
Nanxun Qin ◽  
Feng Wang ◽  
Jia Wang ◽  
...  

Ribosome production in eukaryotes requires the complex and precise coordination of several hundred assembly factors, including many small nucleolar RNAs (snoRNAs). However, at present, the distinct role of key snoRNAs in ribosome biogenesis remains poorly understood in higher plants. Here we report that a previously uncharacterized C (RUGAUGA)/D (CUGA) type snoRNA, HIDDEN TREASURE 2 (HID2), acts as an important regulator of ribosome biogenesis through a snoRNA–rRNA interaction. Nucleolus-localized HID2 is actively expressed in Arabidopsis proliferative tissues, whereas defects in HID2 cause a series of developmental defects reminiscent of ribosomal protein mutants. HID2 associates with the precursor 45S rRNA and promotes the efficiency and accuracy of pre-rRNA processing. Intriguingly, disrupting HID2 in Arabidopsis appears to impair the integrity of 27SB, a key pre-rRNA intermediate that generates 25S and 5.8S rRNA and is known to be vital for the synthesis of the 60S large ribosomal subunit and also produces an imbalanced ribosome profile. Finally, we demonstrate that the antisense-box of HID2 is both functionally essential and highly conserved in eukaryotes. Overall, our study reveals the vital and possibly conserved role of a snoRNA in monitoring the efficiency of pre-rRNA processing during ribosome biogenesis.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Yu Mi Woo ◽  
Do Yeon Kim ◽  
Nam Jin Koo ◽  
Yong-Min Kim ◽  
Sunyoung Lee ◽  
...  
Keyword(s):  

2006 ◽  
Vol 28 (1) ◽  
pp. 114-128 ◽  
Author(s):  
M. A. Keller ◽  
S. Addya ◽  
R. Vadigepalli ◽  
B. Banini ◽  
K. Delgrosso ◽  
...  

Deciphering the molecular basis for human erythropoiesis should yield information benefiting studies of the hemoglobinopathies and other erythroid disorders. We used an in vitro erythroid differentiation system to study the developing red blood cell transcriptome derived from adult CD34+ hematopoietic progenitor cells. mRNA expression profiling was used to characterize developing erythroid cells at six time points during differentiation ( days 1, 3, 5, 7, 9, and 11). Eleven thousand seven hundred sixty-three genes (20,963 Affymetrix probe sets) were expressed on day 1, and 1,504 genes, represented by 1,953 probe sets, were differentially expressed (DE) with 537 upregulated and 969 downregulated. A subset of the DE genes was validated using real-time RT-PCR. The DE probe sets were subjected to a cluster metric and could be divided into two, three, four, five, or six clusters of genes with different expression patterns in each cluster. Genes in these clusters were examined for shared transcription factor binding sites (TFBS) in their promoters by comparing enrichment of each TFBS relative to a reference set using transcriptional regulatory network analysis. The sets of TFBS enriched in genes up- and downregulated during erythropoiesis were distinct. This analysis identified transcriptional regulators critical to erythroid development, factors recently found to play a role, as well as a new list of potential candidates, including Evi-1, a potential silencer of genes upregulated during erythropoiesis. Thus this transcriptional regulatory network analysis has yielded a focused set of factors and their target genes whose role in differentiation of the hematopoietic stem cell into distinct blood cell lineages can be elucidated.


2009 ◽  
Vol 77 (12) ◽  
pp. 5291-5299 ◽  
Author(s):  
Francisco A. Uzal ◽  
Juliann Saputo ◽  
Sameera Sayeed ◽  
Jorge E. Vidal ◽  
Derek J. Fisher ◽  
...  

ABSTRACT Clostridium perfringens type C isolates cause enterotoxemias and enteritis in humans and livestock. While the major disease signs and lesions of type C disease are usually attributed to beta toxin (CPB), these bacteria typically produce several different lethal toxins. Since understanding of disease pathogenesis and development of improved vaccines is hindered by the lack of small animal models mimicking the lethality caused by type C isolates, in this study we developed two mouse models of C. perfringens type C-induced lethality. When inoculated into BALB/c mice by intragastric gavage, 7 of 14 type C isolates were lethal, whereas when inoculated intraduodenally, these strains were all lethal in these mice. Clinical signs in intragastrically and intraduodenally challenged mice were similar and included respiratory distress, abdominal distension, and neurological alterations. At necropsy, the small, and occasionally the large, intestine was dilated and gas filled in most mice developing a clinical response. Histological changes in the gut were relatively mild, consisting of attenuation of the mucosa with villus blunting. Inactivation of the CPB-encoding gene rendered the highly virulent type C strain CN3685 avirulent in the intragastric model and nearly nonlethal in the intraduodenal model. In contrast, inactivation of the genes encoding alpha toxin and perfringolysin O only slightly decreased the lethality of CN3685. Mice could be protected against lethality by intravenous passive immunization with a CPB antibody prior to intragastric challenge. This study proves that CPB is a major contributor to the systemic effects of type C infections and provides new mouse models for investigating the pathogenesis of type C-induced lethality.


Viruses ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 310 ◽  
Author(s):  
Junying Liu ◽  
Huiyan Fan ◽  
Ying Wang ◽  
Chenggui Han ◽  
Xianbing Wang ◽  
...  

Beet necrotic yellow vein virus (BNYVV) infections induce stunting and leaf curling, as well as root and floral developmental defects and leaf senescence in Nicotiana benthamiana. A microarray analysis with probes capable of detecting 1596 candidate microRNAs (miRNAs) was conducted to investigate differentially expressed miRNAs and their targets upon BNYVV infection of N. benthamiana plants. Eight species-specific miRNAs of N. benthamiana were identified. Comprehensive characterization of the N. benthamiana microRNA profile in response to the BNYVV infection revealed that 129 miRNAs were altered, including four species-specific miRNAs. The targets of the differentially expressed miRNAs were predicted accordingly. The expressions of miR164, 160, and 393 were up-regulated by BNYVV infection, and those of their target genes, NAC21/22, ARF17/18, and TIR, were down-regulated. GRF1, which is a target of miR396, was also down-regulated. Further genetic analysis of GRF1, by Tobacco rattle virus-induced gene silencing, assay confirmed the involvement of GRF1 in the symptom development during BNYVV infection. BNYVV infection also induced the up-regulation of miR168 and miR398. The miR398 was predicted to target umecyanin, and silencing of umecyanin could enhance plant resistance against viruses, suggesting the activation of primary defense response to BNYVV infection in N. benthamiana. These results provide a global profile of miRNA changes induced by BNYVV infection and enhance our understanding of the mechanisms underlying BNYVV pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document