scholarly journals Robust ultrathin nanoporous MOF membrane with intra-crystalline defects for fast water transport

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Xueling Wang ◽  
Qiang Lyu ◽  
Tiezheng Tong ◽  
Kuo Sun ◽  
Li-Chiang Lin ◽  
...  

AbstractRational design of high-performance stable metal–organic framework (MOF) membranes is challenging, especially for the sustainable treatment of hypersaline waters to address critical global environmental issues. Herein, a molecular-level intra-crystalline defect strategy combined with a selective layer thinning protocol is proposed to fabricate robust ultrathin missing-linker UiO-66 (ML-UiO-66) membrane to enable fast water permeation. Besides almost complete salt rejection, high and stable water flux is achieved even under long-term pervaporation operation in hash environments, which effectively addresses challenging stability issues. Then, detailed structural characterizations are employed to identify the type, chemical functionality, and density of intra-crystalline missing-linker defects. Moreover, molecular dynamics simulations shed light on the positive atomistic role of these defects, which are responsible for substantially enhancing structural hydrophilicity and enlarging pore window, consequently allowing ultra-fast water transport via a lower-energy-barrier pathway across three-dimensional sub-nanochannels during pervaporation. Unlike common unfavorable defect effects, the present positive intra-crystalline defect engineering concept at the molecular level is expected to pave a promising way toward not only rational design of next-generation MOF membranes with enhanced permeation performance, but additional water treatment applications.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Hang Wang ◽  
Shuang Zhao ◽  
Yi Liu ◽  
Ruxin Yao ◽  
Xiaoqi Wang ◽  
...  

Abstract Metal-organic frameworks (MOFs) with high porosity and designable functionality make it possible to access the merits of high permeability and selectivity. However, scalable fabrication methods to produce mixed matrix membranes (MMMs) with good flexibility and ultrahigh MOF loading are urgently needed yet largely unmet. Herein, we report a thermally induced phase separation-hot pressing (TIPS-HoP) strategy to roll-to-roll produce 10 distinct MOF-membranes (loadings up to 86 wt%). Ultrahigh-molecular-weight polyethylene interweaving the MOF particles contributes to their mechanical strength. Rejections (99%) of organic dyes with a water flux of 125.7 L m–2 h–1 bar–1 under cross-flow filtration mode. The micron-sized channels between the MOF particles translate into fast water permeation, while the porous MOFs reject solutes through rapid adsorption. This strategy paves ways for developing high-performance membrane adsorbers for crucial separation processes. As a proof-of-concept, the abilities of the membrane adsorbers for separating racemates and proteins have been demonstrated.


CrystEngComm ◽  
2015 ◽  
Vol 17 (48) ◽  
pp. 9336-9347 ◽  
Author(s):  
Jingyun Ma ◽  
Longwei Yin ◽  
Tairu Ge

We report on the rational design and synthesis of three dimensional (3D) Cu-doped NiO architectures with an adjustable chemical component, surface area, and hierarchically porous structure as anodes for lithium ion battery.


2017 ◽  
Vol 121 (2) ◽  
pp. 1171-1181 ◽  
Author(s):  
Matthew Witman ◽  
Sanliang Ling ◽  
Andrzej Gladysiak ◽  
Kyriakos C. Stylianou ◽  
Berend Smit ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Zhengqing Ye ◽  
Ying Jiang ◽  
Li Li ◽  
Feng Wu ◽  
Renjie Chen

AbstractMetal–organic framework (MOF)-based materials with high porosity, tunable compositions, diverse structures, and versatile functionalities provide great scope for next-generation rechargeable battery applications. Herein, this review summarizes recent advances in pristine MOFs, MOF composites, MOF derivatives, and MOF composite derivatives for high-performance sodium-ion batteries, potassium-ion batteries, Zn-ion batteries, lithium–sulfur batteries, lithium–oxygen batteries, and Zn–air batteries in which the unique roles of MOFs as electrodes, separators, and even electrolyte are highlighted. Furthermore, through the discussion of MOF-based materials in each battery system, the key principles for controllable synthesis of diverse MOF-based materials and electrochemical performance improvement mechanisms are discussed in detail. Finally, the major challenges and perspectives of MOFs are also proposed for next-generation battery applications.


2013 ◽  
Vol 10 (82) ◽  
pp. 20121028 ◽  
Author(s):  
Egon Heiss ◽  
Nikolay Natchev ◽  
Michaela Gumpenberger ◽  
Anton Weissenbacher ◽  
Sam Van Wassenbergh

During the evolutionary transition from fish to tetrapods, a shift from uni- to bidirectional suction feeding systems followed a reduction in the gill apparatus. Such a shift can still be observed during metamorphosis of salamanders, although many adult salamanders retain their aquatic lifestyle and feed by high-performance suction. Unfortunately, little is known about the interplay between jaws and hyobranchial motions to generate bidirectional suction flows. Here, we study the cranial morphology, as well as kinematic and hydrodynamic aspects related to prey capture in the Chinese giant salamander ( Andrias davidianus ). Compared with fish and previously studied amphibians, A. davidianus uses an alternative suction mechanism that mainly relies on accelerating water by separating the ‘plates’ formed by the long and broad upper and lower jaw surfaces. Computational fluid dynamics simulations, based on three-dimensional morphology and kinematical data from high-speed videos, indicate that the viscerocranial elements mainly serve to accommodate the water that was given a sufficient anterior-to-posterior impulse beforehand by powerful jaw separation. We hypothesize that this modified way of generating suction is primitive for salamanders, and that this behaviour could have played an important role in the evolution of terrestrial life in vertebrates by releasing mechanical constraints on the hyobranchial system.


Author(s):  
Ahmed M. Alshwairekh ◽  
Umar F. Alqsair ◽  
Anas M. Alwatban ◽  
Justin Caspar ◽  
Alparslan Oztekin

Abstract Computational fluid dynamics simulations for water desalination using forward osmosis were conducted on a flat membrane module. In the simulations, the effect of the porous support layer is assumed negligible. The simulations were performed with two values of flow rate such that the Reynolds number equals 200 and 800 in each channel. The working temperatures of both the feed and the draw solutions were varied from 20°C to 40°C. The feed solution had a concentration of 0.00355 solute mass fraction while the draw concentration was set to 0.0355 solute mass fraction. In all simulations, the laminar model was utilized. The results of the simulations suggest that the osmotic pressure is not the only factor that affects the water flux in forward osmosis when there is a temperature difference between the two sides of the membrane. The solution properties have a significant effect on the separation process. As the solution temperature increases, the viscosity decreases, which in turn increases the water permeation through the membrane. The feed temperature had a more substantial influence on the water flux compared to the draw temperature. Also, the effect of changing the flow rate did not change the results substantially.


2015 ◽  
Vol 3 (10) ◽  
pp. 5617-5627 ◽  
Author(s):  
Liang Chen ◽  
Chenyu Xu ◽  
Ran Du ◽  
Yueyuan Mao ◽  
Cheng Xue ◽  
...  

“Carbon nanoleaf” aerogels were developed, constructed with nitrogen-doped CNTs/GNRs, which show excellent catalytic performance in oxygen reduction reaction.


Sign in / Sign up

Export Citation Format

Share Document