scholarly journals Most myopathic lamin variants aggregate: a functional genomics approach for assessing variants of uncertain significance

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Corey L. Anderson ◽  
Emma R. Langer ◽  
Timothy C. Routes ◽  
Seamus F. McWilliams ◽  
Igor Bereslavskyy ◽  
...  

AbstractHundreds of LMNA variants have been associated with several distinct disease phenotypes. However, genotype–phenotype relationships remain largely undefined and the impact for most variants remains unknown. We performed a functional analysis for 178 variants across five structural domains using two different overexpression models. We found that lamin A aggregation is a major determinant for skeletal and cardiac laminopathies. An in vitro solubility assay shows that aggregation-prone variants in the immunoglobulin-like domain correlate with domain destabilization. Finally, we demonstrate that myopathic-associated LMNA variants show aggregation patterns in induced pluripotent stem cell derived-cardiomyocytes (iPSC-CMs) in contrast to non-myopathic LMNA variants. Our data-driven approach (1) reveals that striated muscle laminopathies are predominantly protein misfolding diseases, (2) demonstrates an iPSC-CM experimental platform for characterizing laminopathic variants in human cardiomyocytes, and (3) supports a functional assay to aid in assessing pathogenicity for myopathic variants of uncertain significance.

2012 ◽  
Vol 18 (1) ◽  
pp. 39-53 ◽  
Author(s):  
Oksana Sirenko ◽  
Carole Crittenden ◽  
Nick Callamaras ◽  
Jayne Hesley ◽  
Yen-Wen Chen ◽  
...  

A large percentage of drugs fail in clinical studies due to cardiac toxicity; thus, development of sensitive in vitro assays that can evaluate potential adverse effects on cardiomyocytes is extremely important for drug development. Human cardiomyocytes derived from stem cell sources offer more clinically relevant cell-based models than those presently available. Human-induced pluripotent stem cell–derived cardiomyocytes are especially attractive because they express ion channels and demonstrate spontaneous mechanical and electrical activity similar to adult cardiomyocytes. Here we demonstrate techniques for measuring the impact of pharmacologic compounds on the beating rate of cardiomyocytes with ImageXpress Micro and FLIPR Tetra systems. The assays employ calcium-sensitive dyes to monitor changes in Ca2+ fluxes synchronous with cell beating, which allows monitoring of the beat rate, amplitude, and other parameters. We demonstrate here that the system is able to detect concentration-dependent atypical patterns caused by hERG inhibitors and other ion channel blockers. We also show that both positive and negative chronotropic effects on cardiac rate can be observed and IC50 values determined. This methodology is well suited for safety testing and can be used to estimate efficacy and dosing of drug candidates prior to clinical studies.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260852
Author(s):  
Meryem Ozgencil ◽  
Julian Barwell ◽  
Marc Tischkowitz ◽  
Louise Izatt ◽  
Ian Kesterton ◽  
...  

Establishing a universally applicable protocol to assess the impact of BRCA1 variants of uncertain significance (VUS) expression is a problem which has yet to be resolved despite major progresses have been made. The numerous difficulties which must be overcome include the choices of cellular models and functional assays. We hypothesised that the use of induced pluripotent stem (iPS) cells might facilitate the standardisation of protocols for classification, and could better model the disease process. We generated eight iPS cell lines from patient samples expressing either BRCA1 pathogenic variants, non-pathogenic variants, or BRCA1 VUSs. The impact of these variants on DNA damage repair was examined using a ɣH2AX foci formation assay, a Homologous Repair (HR) reporter assay, and a chromosome abnormality assay. Finally, all lines were tested for their ability to differentiate into mammary lineages in vitro. While the results obtained from the two BRCA1 pathogenic variants were consistent with published data, some other variants exhibited differences. The most striking of these was the BRCA1 variant Y856H (classified as benign), which was unexpectedly found to present a faulty HR repair pathway, a finding linked to the presence of an additional variant in the ATM gene. Finally, all lines were able to differentiate first into mammospheres, and then into more advanced mammary lineages expressing luminal- or basal-specific markers. This study stresses that BRCA1 genetic analysis alone is insufficient to establish a reliable and functional classification for assessment of clinical risk, and that it cannot be performed without considering the other genetic aberrations which may be present in patients. The study also provides promising opportunities for elucidating the physiopathology and clinical evolution of breast cancer, by using iPS cells.


Cancers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 295 ◽  
Author(s):  
Elisa Gelli ◽  
Mara Colombo ◽  
Anna Pinto ◽  
Giovanna De Vecchi ◽  
Claudia Foglia ◽  
...  

Highly penetrant variants of BRCA1/2 genes are involved in hereditary predisposition to breast and ovarian cancer. The detection of pathogenic BRCA variants has a considerable clinical impact, allowing appropriate cancer-risk management. However, a major drawback is represented by the identification of variants of uncertain significance (VUS). Many VUS potentially affect mRNA splicing, making transcript analysis an essential step for the definition of their pathogenicity. Here, we characterize the impact on splicing of ten BRCA1/2 variants. Aberrant splicing patterns were demonstrated for eight variants whose alternative transcripts were fully characterized. Different events were observed, including exon skipping, intron retention, and usage of de novo and cryptic splice sites. Transcripts with premature stop codons or in-frame loss of functionally important residues were generated. Partial/complete splicing effect and quantitative contribution of different isoforms were assessed, leading to variant classification according to Evidence-based Network for the Interpretation of Mutant Alleles (ENIGMA) consortium guidelines. Two variants could be classified as pathogenic and two as likely benign, while due to a partial splicing effect, six variants remained of uncertain significance. The association with an undefined tumor risk justifies caution in recommending aggressive risk-reduction treatments, but prevents the possibility of receiving personalized therapies with potential beneficial effect. This indicates the need for applying additional approaches for the analysis of variants resistant to classification by gene transcript analyses.


2020 ◽  
Author(s):  
Walter E. Knight ◽  
Yingqiong Cao ◽  
Ying-Hsi Lin ◽  
Genevieve C. Sparagna ◽  
Betty Bai ◽  
...  

AbstractRationaleHuman induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) are a powerful platform for biomedical research. However, they are immature, which is a barrier to modeling adult-onset cardiovascular disease.ObjectiveWe sought to develop a simple method which could drive cultured hiPSC-CMs towards maturity across a number of phenotypes.Methods and resultsCells were cultured in fatty acid-based media and plated on micropatterned surfaces to promote alignment and elongation. These cells display many characteristics of adult human cardiomyocytes, including elongated cell morphology, enhanced maturity of sarcomeric structures, metabolic behavior, and increased myofibril contractile force. Most notably, hiPSC-CMs cultured under optimal maturity-inducing conditions recapitulate the pathological hypertrophy caused by either a pro-hypertrophic agent or genetic mutations.ConclusionsThe more mature hiPSC-CMs produced by the methods described here will serve as a useful in vitro platform for characterizing cardiovascular disease.


2021 ◽  
Author(s):  
Karen I Lange ◽  
Sunayna Best ◽  
Sofia Tsiropoulou ◽  
Ian Berry ◽  
Colin A Johnson ◽  
...  

Purpose: A molecular genetic diagnosis is essential for accurate counselling and management of patients with ciliopathies. Uncharacterized missense alleles are often classified as variants of uncertain significance (VUS) and are not clinically useful. In this study, we explore the use of a tractable animal model (C. elegans) for in vivo interpretation of missense VUS alleles of TMEM67, a gene frequently mutated as a cause of ciliopathies. Methods: CRISPR/Cas9 gene editing was used to generate homozygous worm strains carrying TMEM67 patient variants. Quantitative phenotypic assays (dye filling, roaming, chemotaxis) assessed cilia structure and function. Results were validated by genetic complementation assays in a human TMEM67 knock-out hTERT-RPE1 cell line. Results: Quantitative assays in C. elegans distinguished between known benign (Asp359Glu, Thr360Ala) and pathogenic (Glu361Ter, Gln376Pro) variants. Analysis of seven missense VUS alleles predicted two benign (Cys173Arg, Thr176Ile) and four pathogenic variants (Cys170Tyr, His782Arg, Gly786Glu, His790Arg). Results from one VUS (Gly979Arg) were inconclusive in worms, but additional in vitro validation suggested it was likely benign. Conclusion: Efficient genome editing and quantitative functional assays in C. elegans make it a tractable in vivo animal model that allows stratification and rapid, cost-effective interpretation of ciliopathy-associated missense VUS alleles.


Author(s):  
Andrew M Glazer ◽  
Giovanni E. Davogustto ◽  
Christian M. Shaffer ◽  
Carlos G Vanoye ◽  
Reshma R. Desai ◽  
...  

Background: Sequencing Mendelian arrhythmia genes in individuals without an indication for arrhythmia genetic testing can identify carriers of pathogenic or likely pathogenic (P/LP) variants. However, the extent to which these variants are associated with clinically meaningful phenotypes before or after return of variant results (RoR) is unclear. In addition, the majority of discovered variants are currently classified as Variants of Uncertain Significance (VUS), limiting clinical actionability. Methods: The eMERGE-III study is a multi-center prospective cohort which included 21,846 participants without prior indication for cardiac genetic testing. Participants were sequenced for 109 Mendelian disease genes, including 10 linked to arrhythmia syndromes. Variant carriers were assessed with Electronic Health Record (EHR)-derived phenotypes and follow-up clinical examination. Selected VUS (n=50) were characterized in vitro with automated electrophysiology experiments in HEK293 cells. Results: As previously reported, 3.0% of participants had pathogenic or likely pathogenic (P/LP) variants in the 109 genes. Herein, we report 120 participants (0.6%) with P/LP arrhythmia variants. Compared to non-carriers, arrhythmia P/LP carriers had a significantly higher burden of arrhythmia phenotypes in their EHRs. Fifty four participants had variant results returned. Nineteen of these 54 participants had inherited arrhythmia syndrome diagnoses (primarily long QT syndrome), and 12/19 of these diagnoses were made only after variant results were returned (0.05%). After in vitro functional evaluation of 50 variants of uncertain significance (VUS), we reclassified 11 variants: 3 to likely benign and 8 to P/LP. Conclusions: Genome sequencing in a large population without indication for arrhythmia genetic testing identified phenotype-positive carriers of variants in congenital arrhythmia syndrome disease genes. As large numbers of people are sequenced, the disease risk from rare variants in arrhythmia genes can be assessed by integrating genomic screening, EHR phenotypes, and in vitro functional studies.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Hirokazu Kimura ◽  
Raymond M Paranal ◽  
Neha Nanda ◽  
Laura D Wood ◽  
James R Eshleman ◽  
...  

Pathogenic germline CDKN2A variants are associated with an increased risk of pancreatic ductal adenocarcinoma (PDAC). CDKN2A variants of uncertain significance (VUSs) are reported in up to 4.3% of patients with PDAC and result in significant uncertainty for patients and their family members as an unknown fraction are functionally deleterious, and therefore, likely pathogenic. Functional characterization of CDKN2A VUSs is needed to reclassify variants and inform clinical management. 29 germline CDKN2A VUSs previously reported in patients with PDAC or in ClinVar were evaluated using a validated in vitro cell proliferation assay. 12 of the 29 CDKN2A VUSs were functionally deleterious (11 VUSs) or potentially functionally deleterious (1 VUS) and were reclassified as likely pathogenic variants. Thus, over 40% of CDKN2A VUSs identified in patients with PDAC are functionally deleterious and likely pathogenic. When incorporating VUSs found to be functionally deleterious, and reclassified as likely pathogenic, the prevalence of pathogenic/likely pathogenic CDKN2A in patients with PDAC reported in the published literature is increased to up to 4.1% of patients, depending on family history. Therefore, CDKN2A VUSs may play a significant, unappreciated role in risk of pancreatic cancer. These findings have significant implications for the counselling and care of patients and their relatives.


2018 ◽  
Vol 23 (6) ◽  
pp. 585-596 ◽  
Author(s):  
Peter Stacey ◽  
Anne Mai Wassermann ◽  
Laura Kammonen ◽  
Emma Impey ◽  
Anna Wilbrey ◽  
...  

Screening against a disease-relevant phenotype to identify compounds that change the outcome of biological pathways, rather than just the activity of specific targets, offers an alternative approach to find modulators of disease characteristics. However, in pain research, use of in vitro phenotypic screens has been impeded by the challenge of sourcing relevant neuronal cell types in sufficient quantity and developing functional end-point measurements with a direct disease link. To overcome these hurdles, we have generated human induced pluripotent stem cell (hiPSC)–derived sensory neurons at a robust production scale using the concept of cryopreserved “near-assay-ready” cells to decouple complex cell production from assay development and screening. hiPSC sensory neurons have then been used for development of a 384-well veratridine-evoked calcium flux assay. This functional assay of neuronal excitability was validated for phenotypic relevance to pain and other hyperexcitability disorders through screening a small targeted validation compound subset. A 2700-compound chemogenomics screen was then conducted to profile the range of target-based mechanisms able to inhibit veratridine-evoked excitability. This report presents the assay development, validation, and screening data. We conclude that high-throughput-compatible pain-relevant phenotypic screening with hiPSC sensory neurons is feasible and ready for application for the identification of new targets, pathways, mechanisms of action, and compounds for modulating neuronal excitability.


Sign in / Sign up

Export Citation Format

Share Document