scholarly journals Fractons from frustration in hole-doped antiferromagnets

2020 ◽  
Vol 5 (1) ◽  
Author(s):  
John Sous ◽  
Michael Pretko

Abstract Recent theoretical research on tensor gauge theories led to the discovery of an exotic type of quasiparticles, dubbed fractons, that obey both charge and dipole conservation. Here we describe physical implementation of dipole conservation laws in realistic systems. We show that fractons find a natural realization in hole-doped antiferromagnets. There, individual holes are largely immobile, while dipolar hole pairs move with ease. First, we demonstrate a broad parametric regime of fracton behavior in hole-doped two-dimensional Ising antiferromagnets viable through five orders in perturbation theory. We then specialize to the case of holes confined to one dimension in an otherwise two-dimensional antiferromagnetic background, which can be realized via the application of external fields in experiments, and prove ideal fracton behavior. We explicitly map the model onto a fracton Hamiltonian featuring conservation of dipole moment. Manifestations of fractonicity in these systems include gravitational clustering of holes. We also discuss diagnostics of fracton behavior, which we argue is borne out in existing experimental results.

Author(s):  
B. D. Athey ◽  
A. L. Stout ◽  
M. F. Smith ◽  
J. P. Langmore

Although there is general agreement that Inactive chromosome fibers consist of helically packed nucleosomes, the pattern of packing is still undetermined. Only one of the proposed models, the crossed-linker model, predicts a variable diameter dependent on the length of DNA between nucleosomes. Measurements of the fiber diameter of negatively-stained and frozen- hydrated- chromatin from Thyone sperm (87bp linker) and Necturus erythrocytes (48bp linker) have been previously reported from this laboratory. We now introduce a more reliable method of measuring the diameters of electron images of fibrous objects. The procedure uses a modified version of the computer program TOTAL, which takes a two-dimensional projection of the fiber density (represented by the micrograph itself) and projects it down the fiber axis onto one dimension. We illustrate this method using high contrast, in-focus STEM images of TMV and chromatin from Thyone and Necturus. The measured diameters are in quantitative agreement with the expected values for the crossed-linker model for chromatin structure


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Tadashi Okazaki ◽  
Douglas J. Smith

Abstract We derive general BPS boundary conditions in two-dimensional $$ \mathcal{N} $$ N = (2, 2) supersymmetric gauge theories. We analyze the solutions of these boundary conditions, and in particular those that allow the bulk fields to have poles at the boundary. We also present the brane configurations for the half- and quarter-BPS boundary conditions of the $$ \mathcal{N} $$ N = (2, 2) supersymmetric gauge theories in terms of branes in Type IIA string theory. We find that both A-type and B-type brane configurations are lifted to M-theory as a system of M2-branes ending on an M5-brane wrapped on a product of a holomorphic curve in ℂ2 with a special Lagrangian 3-cycle in ℂ3.


2021 ◽  
Vol 111 (3) ◽  
Author(s):  
Giulio Bonelli ◽  
Fabrizio Del Monte ◽  
Pavlo Gavrylenko ◽  
Alessandro Tanzini

AbstractWe study the relation between class $$\mathcal {S}$$ S theories on punctured tori and isomonodromic deformations of flat SL(N) connections on the two-dimensional torus with punctures. Turning on the self-dual $$\Omega $$ Ω -background corresponds to a deautonomization of the Seiberg–Witten integrable system which implies a specific time dependence in its Hamiltonians. We show that the corresponding $$\tau $$ τ -function is proportional to the dual gauge theory partition function, the proportionality factor being a nontrivial function of the solution of the deautonomized Seiberg–Witten integrable system. This is obtained by mapping the isomonodromic deformation problem to $$W_N$$ W N free fermion correlators on the torus.


Atoms ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 53
Author(s):  
Jack C. Straton

Quantum theory is awash in multidimensional integrals that contain exponentials in the integration variables, their inverses, and inverse polynomials of those variables. The present paper introduces a means to reduce pairs of such integrals to one dimension when the integrand contains powers multiplied by an arbitrary function of xy/(x+y) multiplying various combinations of exponentials. In some cases these exponentials arise directly from transition-amplitudes involving products of plane waves, hydrogenic wave functions, and Yukawa and/or Coulomb potentials. In other cases these exponentials arise from Gaussian transforms of such functions.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Y. Ünal ◽  
Ulf-G. Meißner

Abstract We report on the calculation of the CP-violating form factor F3 and the corresponding electric dipole moment for charmed baryons in the spin-1/2 sector generated by the QCD θ-term. We work in the framework of covariant baryon chiral perturbation theory within the extended-on-mass-shell renormalization scheme up to next-to-leading order in the chiral expansion.


Sign in / Sign up

Export Citation Format

Share Document