scholarly journals Kondo scenario of the γ–α phase transition in single crystalline cerium thin films

2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Xie-Gang Zhu ◽  
Yu Liu ◽  
Ya-Wen Zhao ◽  
Yue-Chao Wang ◽  
Yun Zhang ◽  
...  
Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1288
Author(s):  
José Julio Gutiérrez Moreno ◽  
Nikolaos T. Panagiotopoulos ◽  
Georgios A. Evangelakis ◽  
Christina E. Lekka

We present results on thin Ti-Nb-based films containing Hf at various concentrations grown by magnetron sputtering. The films exhibit α” patterns at Hf concentrations up to 11 at.%, while at 16 at.% Hf, the β-phase emerges as a stable structure. These findings were consolidated by ab initio calculations, according to which the α”–β transformation is manifested in the calculation of the electronic band energies for Hf contents between 11 and 18 at.%. It turns out that the β-phase transition originates from the Hf 5d contributions at the Fermi level and the Hf 6s hybridizations at low energies in the electronic density of states. Bonding–anti-bonding first neighbor features existing in the shifted plane destabilize the α″-phase, especially at high Hf concentrations, while the covalent-like features in the first neighborhood stabilize the corresponding plane of the β-phase. Thin films measurements and bulk total energy calculations agree that the lattice constants of both α″ and β phases increase upon Hf substitution. These results are important for the understanding of β-Ti-based alloys formation mechanisms and can be used for the design of suitable biocompatible materials.


2003 ◽  
Vol 762 ◽  
Author(s):  
Hwang Huh ◽  
Jung H. Shin

AbstractAmorphous silicon (a-Si) films prepared on oxidized silicon wafer were crystallized to a highly textured form using contact printing of rolled and annealed nickel tapes. Crystallization was achieved by first annealing the a-Si film in contact with patterned Ni tape at 600°C for 20 min in a flowing forming gas (90 % N2, 10 % H2) environment, then removing the Ni tape and further annealing the a-Si film in vacuum for2hrsat600°C. An array of crystalline regions with diameters of up to 20 μm could be formed. Electron microscopy indicates that the regions are essentially single-crystalline except for the presence of twins and/or type A-B formations, and that all regions have the same orientation in all 3 directions even when separated by more than hundreds of microns. High resolution TEM analysis shows that formation of such orientation-controlled, nearly single crystalline regions is due to formation of nearly single crystalline NiSi2 under the point of contact, which then acts as the template for silicide-induced lateral crystallization. Furthermore, the orientation relationship between Si grains and Ni tape is observed to be Si (110) || Ni (001)


2017 ◽  
Vol 1 (6) ◽  
Author(s):  
S. Cervera ◽  
M. Trassinelli ◽  
M. Marangolo ◽  
C. Carrétéro ◽  
V. Garcia ◽  
...  

Author(s):  
Yechao Ling ◽  
Yong Hu ◽  
Haobo Wang ◽  
Ben Niu ◽  
Jiawei Chen ◽  
...  

2013 ◽  
Vol 753 ◽  
pp. 505-509
Author(s):  
Yuichi Sato ◽  
Toshifumi Suzuki ◽  
Hiroyuki Mogami ◽  
Fumito Otake ◽  
Hirotoshi Hatori ◽  
...  

Solid phase growth of thin films of copper (Cu), aluminum (Al) and zinc oxide (ZnO) on single crystalline sapphire and quartz glass substrates were tried by heat-treatments and their crystallization conditions were investigated. ZnO thin films relatively easily recrystallized even when they were deposited on the amorphous quartz glass substrate. On the other hand, Cu and Al thin films hardly recrystallized when they were deposited on the quartz glass substrate. The metal thin films could be recrystallized at only extremely narrow windows of the heat-treatment conditions when they were deposited on the single crystalline sapphire substrate. The window of the solid phase heteroepitaxial growth condition of the Al film was wider than that of the Cu film.


2010 ◽  
Vol 108 (2) ◽  
pp. 024506 ◽  
Author(s):  
Ki-Ho Song ◽  
Seung-Cheol Beak ◽  
Hyun-Yong Lee

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Run Shi ◽  
Yong Chen ◽  
Xiangbin Cai ◽  
Qing Lian ◽  
Zhuoqiong Zhang ◽  
...  

AbstractA systematic study of various metal-insulator transition (MIT) associated phases of VO2, including metallic R phase and insulating phases (T, M1, M2), is required to uncover the physics of MIT and trigger their promising applications. Here, through an oxide inhibitor-assisted stoichiometry engineering, we show that all the insulating phases can be selectively stabilized in single-crystalline VO2 beams at room temperature. The stoichiometry engineering strategy also provides precise spatial control of the phase configurations in as-grown VO2 beams at the submicron-scale, introducing a fresh concept of phase transition route devices. For instance, the combination of different phase transition routes at the two sides of VO2 beams gives birth to a family of single-crystalline VO2 actuators with highly improved performance and functional diversity. This work provides a substantial understanding of the stoichiometry-temperature phase diagram and a stoichiometry engineering strategy for the effective phase management of VO2.


2021 ◽  
pp. 111114
Author(s):  
Hei Man Yau ◽  
Xinxin Chen ◽  
Chi Man Wong ◽  
Deyang Chen ◽  
Jiyan Dai

Sign in / Sign up

Export Citation Format

Share Document