scholarly journals Probing the interplay between lattice dynamics and short-range magnetic correlations in CuGeO3 with femtosecond RIXS

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
E. Paris ◽  
C. W. Nicholson ◽  
S. Johnston ◽  
Y. Tseng ◽  
M. Rumo ◽  
...  

AbstractInvestigations of magnetically ordered phases on the femtosecond timescale have provided significant insights into the influence of charge and lattice degrees of freedom on the magnetic sub-system. However, short-range magnetic correlations occurring in the absence of long-range order, for example in spin-frustrated systems, are inaccessible to many ultrafast techniques. Here, we show how time-resolved resonant inelastic X-ray scattering (trRIXS) is capable of probing such short-ranged magnetic dynamics in a charge-transfer insulator through the detection of a Zhang–Rice singlet exciton. Utilizing trRIXS measurements at the O K-edge, and in combination with model calculations, we probe the short-range spin correlations in the frustrated spin chain material CuGeO3 following photo-excitation, revealing a strong coupling between the local lattice and spin sub-systems.

2019 ◽  
Vol 205 ◽  
pp. 07007
Author(s):  
Yinpeng Zhong ◽  
Sascha Epp ◽  
Faton Krasniqi ◽  
Lutz Foucar ◽  
Mariano Trigo ◽  
...  

Time-resolved X-ray diffraction from Ga091Mn0 09As was recorded with a hard X-ray free-electron-laser. The influence of spin-orders on phonons was investigated; our result suggests a new method for mapping the spin-correlations in low doped magnetic systems, especially the short-range spin-correlation.


1998 ◽  
Vol 07 (03) ◽  
pp. 367-377
Author(s):  
I. S. Gul'karov ◽  
B. P. Nigam

The charge densities of the nuclei 205Tl, 206,208Pb have been calculated in modified shell model with fractional number occupations of the shell states 2s, 2p, 2d, and 3s. The value of the n3 s was found to be 0.6 for 206TI, and ≈ 1 for 206,208Pb. These values differ appreciably from other data which range between 1.3 to 1.6. By addition of the two neutrons to 206P a charge of 0.24e of one proton is moved from the inner region of the 208Pb to the outer region. In the context of our modified shell model calculations, the measured charge density and occupancy profiles imply that the neutron degrees of freedom we employ carry charge.


2020 ◽  
Author(s):  
Yuan-Yuan Tan ◽  
Ming-Yao Su ◽  
Zhou-Can Xie ◽  
Zhong-Jun Chen ◽  
Yu Gong ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jan Ravnik ◽  
Michele Diego ◽  
Yaroslav Gerasimenko ◽  
Yevhenii Vaskivskyi ◽  
Igor Vaskivskyi ◽  
...  

AbstractMetastable self-organized electronic states in quantum materials are of fundamental importance, displaying emergent dynamical properties that may be used in new generations of sensors and memory devices. Such states are typically formed through phase transitions under non-equilibrium conditions and the final state is reached through processes that span a large range of timescales. Conventionally, phase diagrams of materials are thought of as static, without temporal evolution. However, many functional properties of materials arise as a result of complex temporal changes in the material occurring on different timescales. Hitherto, such properties were not considered within the context of a temporally-evolving phase diagram, even though, under non-equilibrium conditions, different phases typically evolve on different timescales. Here, by using time-resolved optical techniques and femtosecond-pulse-excited scanning tunneling microscopy (STM), we track the evolution of the metastable states in a material that has been of wide recent interest, the quasi-two-dimensional dichalcogenide 1T-TaS2. We map out its temporal phase diagram using the photon density and temperature as control parameters on timescales ranging from 10−12 to 103 s. The introduction of a time-domain axis in the phase diagram enables us to follow the evolution of metastable emergent states created by different phase transition mechanisms on different timescales, thus enabling comparison with theoretical predictions of the phase diagram, and opening the way to understanding of the complex ordering processes in metastable materials.


2021 ◽  
Vol 22 (9) ◽  
pp. 4803
Author(s):  
Eduardo Gomez ◽  
Ichiro Hisaki ◽  
Abderrazzak Douhal

Hydrogen-bonded organic frameworks (HOFs) are the focus of intense scientific research due their potential applications in science and technology. Here, we report on the synthesis, characterization, and photobehavior of a new HOF (T12F-1(124TCB)) based on a dehydrobenzoannulene derivative containing fluorine atoms (T12F-COOH). This HOF exhibits a 2D porous sheet, which is hexagonally networked via H-bonds between the carboxylic groups, and has an interlayers distance (4.3 Å) that is longer than that of a typical π–π interaction. The presence of the fluorine atoms in the DBA molecular units largely increases the emission quantum yield in DMF (0.33, T12F-COOH) when compared to the parent compound (0.02, T12-COOH). The time-resolved dynamics of T12F-COOH in DMF is governed by the emission from a locally excited state (S1, ~ 0.4 ns), a charge-transfer state (S1(CT), ~ 2 ns), and a room temperature emissive triplet state (T1, ~ 20 ns), in addition to a non-emissive triplet structure with a charge-transfer character (T1(CT), τ = 0.75 µs). We also report on the results using T12F-ester. Interestingly, FLIM experiments on single crystals unravel that the emission lifetimes of the crystalline HOF are almost twice those of the amorphous ones or the solid T12F-ester sample. This shows the relevance of the H-bonds in the photodynamics of the HOF and provides a strong basis for further development and study of HOFs based on DBAs for potential applications in photonics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ivan Ramirez ◽  
Alberto Privitera ◽  
Safakath Karuthedath ◽  
Anna Jungbluth ◽  
Johannes Benduhn ◽  
...  

AbstractStability is now a critical factor in the commercialization of organic photovoltaic (OPV) devices. Both extrinsic stability to oxygen and water and intrinsic stability to light and heat in inert conditions must be achieved. Triplet states are known to be problematic in both cases, leading to singlet oxygen production or fullerene dimerization. The latter is thought to proceed from unquenched singlet excitons that have undergone intersystem crossing (ISC). Instead, we show that in bulk heterojunction (BHJ) solar cells the photo-degradation of C60 via photo-oligomerization occurs primarily via back-hole transfer (BHT) from a charge-transfer state to a C60 excited triplet state. We demonstrate this to be the principal pathway from a combination of steady-state optoelectronic measurements, time-resolved electron paramagnetic resonance, and temperature-dependent transient absorption spectroscopy on model systems. BHT is a much more serious concern than ISC because it cannot be mitigated by improved exciton quenching, obtained for example by a finer BHJ morphology. As BHT is not specific to fullerenes, our results suggest that the role of electron and hole back transfer in the degradation of BHJs should also be carefully considered when designing stable OPV devices.


1991 ◽  
Vol 69 (8) ◽  
pp. 5255-5255 ◽  
Author(s):  
J. N. Reimers ◽  
J. E. Greedan ◽  
M. A. Subramanian ◽  
R. K. Kremer ◽  
E. Gmelin

2018 ◽  
Vol 121 (25) ◽  
Author(s):  
A. Amico ◽  
F. Scazza ◽  
G. Valtolina ◽  
P. E. S. Tavares ◽  
W. Ketterle ◽  
...  

1983 ◽  
Vol 23 ◽  
Author(s):  
D. H. Lowndes ◽  
R. F. Wood ◽  
C. W. White ◽  
J. Narayan

ABSTRACTMeasurements of the time of the onset of melting of self-implantation amorphized (a) Si, during an incident laser pulse, have been combined with modified melting model calculations and measurements of surface melt duration to demonstrate that the thermal conductivity, Ka, of a-Si is very low (≃0.02 W/cm-K). Ka is also shown to be the dominant parameter determining the dynamical response of ionimplanted Si to pulsed laser radiation; the latent heat and melting temperature of a-Si are relatively unimportant. Cross-sectional transmission electron micrographs on implantation-amorphized Si layers of several different thicknesses show that for energy densities less than the threshold value for complete annealing there are usually two distinct regions in the re-solidified a-Si, consisting of fine-grained and large-grained polycrystalline Si, respectively. The presence of the fine-grained poly-Si suggests that bulk nucleation occurs directly from the highly undercooled liquid phase. Thermal melting model calculations suggest that the nucleation temperature, Tn is ≃1200°C.


2015 ◽  
Vol 769 ◽  
pp. 369-386 ◽  
Author(s):  
A. Lefebvre-Lepot ◽  
B. Merlet ◽  
T. N. Nguyen

We address the problem of computing the hydrodynamic forces and torques among $N$ solid spherical particles moving with given rotational and translational velocities in Stokes flow. We consider the original fluid–particle model without introducing new hypotheses or models. Our method includes the singular lubrication interactions which may occur when some particles come close to one another. The main new feature is that short-range interactions are propagated to the whole flow, including accurately the many-body lubrication interactions. The method builds on a pre-existing fluid solver and is flexible with respect to the choice of this solver. The error is the error generated by the fluid solver when computing non-singular flows (i.e. with negligible short-range interactions). Therefore, only a small number of degrees of freedom are required and we obtain very accurate simulations within a reasonable computational cost. Our method is closely related to a method proposed by Sangani & Mo (Phys. Fluids, vol. 6, 1994, pp. 1653–1662) but, in contrast with the latter, it does not require parameter tuning. We compare our method with the Stokesian dynamics of Durlofsky et al. (J. Fluid Mech., vol. 180, 1987, pp. 21–49) and show the higher accuracy of the former (both by analysis and by numerical experiments).


Sign in / Sign up

Export Citation Format

Share Document