scholarly journals Children develop robust and sustained cross-reactive spike-specific immune responses to SARS-CoV-2 infection

2021 ◽  
Author(s):  
Alexander C. Dowell ◽  
Megan S. Butler ◽  
Elizabeth Jinks ◽  
Gokhan Tut ◽  
Tara Lancaster ◽  
...  

AbstractSARS-CoV-2 infection is generally mild or asymptomatic in children but a biological basis for this outcome is unclear. Here we compare antibody and cellular immunity in children (aged 3–11 years) and adults. Antibody responses against spike protein were high in children and seroconversion boosted responses against seasonal Beta-coronaviruses through cross-recognition of the S2 domain. Neutralization of viral variants was comparable between children and adults. Spike-specific T cell responses were more than twice as high in children and were also detected in many seronegative children, indicating pre-existing cross-reactive responses to seasonal coronaviruses. Importantly, children retained antibody and cellular responses 6 months after infection, whereas relative waning occurred in adults. Spike-specific responses were also broadly stable beyond 12 months. Therefore, children generate robust, cross-reactive and sustained immune responses to SARS-CoV-2 with focused specificity for the spike protein. These findings provide insight into the relative clinical protection that occurs in most children and might help to guide the design of pediatric vaccination regimens.

2017 ◽  
Vol 214 (9) ◽  
pp. 2563-2572 ◽  
Author(s):  
Spencer W. Stonier ◽  
Andrew S. Herbert ◽  
Ana I. Kuehne ◽  
Ariel Sobarzo ◽  
Polina Habibulin ◽  
...  

Until recently, immune responses in filovirus survivors remained poorly understood. Early studies revealed IgM and IgG responses to infection with various filoviruses, but recent outbreaks have greatly expanded our understanding of filovirus immune responses. Immune responses in survivors of Ebola virus (EBOV) and Sudan virus (SUDV) infections have provided the most insight, with T cell responses as well as detailed antibody responses having been characterized. Immune responses to Marburg virus (MARV), however, remain almost entirely uncharacterized. We report that immune responses in MARV survivors share characteristics with EBOV and SUDV infections but have some distinct differences. MARV survivors developed multivariate CD4+ T cell responses but limited CD8+ T cell responses, more in keeping with SUDV survivors than EBOV survivors. In stark contrast to SUDV survivors, rare neutralizing antibody responses in MARV survivors diminished rapidly after the outbreak. These results warrant serious consideration for any vaccine or therapeutic that seeks to be broadly protective, as different filoviruses may require different immune responses to achieve immunity.


Author(s):  
Adrian Rice ◽  
Mohit Verma ◽  
Annie Shin ◽  
Lise Zakin ◽  
Peter Sieling ◽  
...  

ABSTRACTIn response to the health crisis presented by the COVID-19 pandemic, rapid development of safe and effective vaccines that elicit durable immune responses is imperative. Recent reports have raised the concern that antibodies in COVID-19 convalescent patients may not be long lasting and thus even these individuals may require vaccination. Vaccine candidates currently in clinical testing have focused on the SARS-CoV-2 wild type spike (S) protein (S-WT) as the major antigen of choice and while pre-clinical and early clinical testing have shown that S elicits an antibody response, we believe the optimal vaccine candidate should be capable of inducing robust, durable T-cell responses as well as humoral responses. We report here on a next generation bivalent human adenovirus serotype 5 (hAd5) vaccine capable of inducing immunity in patients with pre-existing adenovirus immunity, comprising both an S sequence optimized for cell surface expression (S-Fusion) and a conserved nucleocapsid (N) antigen designed to be transported to the endosomal subcellular compartment, with the potential to generate durable immune protection. Our studies suggest that this bivalent vaccine is optimized for immunogenicity as evidenced by the following findings: (i) The optimized S-Fusion displayed improved S receptor binding domain (RBD) cell surface expression compared to S-WT where little surface expression was detected; (ii) the expressed RBD from S-Fusion retained conformational integrity and recognition by ACE2-Fc; (iii) the viral N protein modified with an enhanced T-cell stimulation domain (ETSD) localized to endosomal/lysosomal subcellular compartments for MHC I/II presentation; and (iv) these optimizations to S and N (S-Fusion and N-ETSD) generated enhanced de novo antigen-specific B cell and CD4+ and CD8+ T-cell responses in antigen-naive pre-clinical models. Both the T-cell and antibody immune responses to S and N demonstrated a T-helper 1 (Th1) bias. The antibody responses were neutralizing as demonstrated by two independent SARS-CoV-2 neutralization assays. Based on these findings, we are advancing this next generation bivalent hAd5 S-Fusion + N-ETSD vaccine as our lead clinical candidate to test for its ability to provide robust, durable cell-mediated and humoral immunity against SARS-CoV-2 infection. Further studies are ongoing to explore utilizing this vaccine construct in oral, intranasal, and sublingual formulations to induce mucosal immunity in addition to cell-mediated and humoral immunity. The ultimate goal of an ideal COVID-19 vaccine is to generate long-term T and B cell memory.


Vaccines ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 4 ◽  
Author(s):  
Muktha S. Natrajan ◽  
Nadine Rouphael ◽  
Lilin Lai ◽  
Dmitri Kazmin ◽  
Travis L. Jensen ◽  
...  

Background: Tularemia is a potential biological weapon due to its high infectivity and ease of dissemination. This study aimed to characterize the innate and adaptive responses induced by two different lots of a live attenuated tularemia vaccine and compare them to other well-characterized viral vaccine immune responses. Methods: Microarray analyses were performed on human peripheral blood mononuclear cells (PBMCs) to determine changes in transcriptional activity that correlated with changes detected by cellular phenotyping, cytokine signaling, and serological assays. Transcriptional profiles after tularemia vaccination were compared with yellow fever [YF-17D], inactivated [TIV], and live attenuated [LAIV] influenza. Results: Tularemia vaccine lots produced strong innate immune responses by Day 2 after vaccination, with an increase in monocytes, NK cells, and cytokine signaling. T cell responses peaked at Day 14. Changes in gene expression, including upregulation of STAT1, GBP1, and IFIT2, predicted tularemia-specific antibody responses. Changes in CCL20 expression positively correlated with peak CD8+ T cell responses, but negatively correlated with peak CD4+ T cell activation. Tularemia vaccines elicited gene expression signatures similar to other replicating vaccines, inducing early upregulation of interferon-inducible genes. Conclusions: A systems vaccinology approach identified that tularemia vaccines induce a strong innate immune response early after vaccination, similar to the response seen after well-studied viral vaccines, and produce unique transcriptional signatures that are strongly correlated to the induction of T cell and antibody responses.


2021 ◽  
Author(s):  
Helen Parry ◽  
Rachel Bruton ◽  
Christine Stephens ◽  
Kevin Brown ◽  
Gayatri Amirthalingam ◽  
...  

Abstract BackgroundSeveral SARS-CoV-2 vaccines have shown clinical efficacy against Covid-19 infection but there remains uncertainty about the immune responses elicited by different regimens. This is a particularly important question for older people who are at increased clinical risk following infection and in whom immune senescence may limit vaccine responses. The BNT162b2 mRNA and ChAdOx1 adenovirus vaccines were the first two vaccines deployed in the UK programme using an 8-12 week ‘extended interval’.ObjectivesWe undertook analysis of the spike-specific antibody and cellular immune response in 131 participants aged 80+ years after the second dose of ‘extended interval’ dual vaccination with either BNT162b2 mRNA (n=54) or ChAdOx1 (n=77) adenovirus vaccine. Blood samples were taken 2-3 weeks after second vaccine and were paired with samples taken at 5-weeks after first vaccine which have been reported previously. Antibody responses were measured using the Elecsys® electrochemiluminescence immunoassay assay and cellular responses were assessed by IFN-g ELISpot. ResultsAntibody responses against spike protein became detectable in all donors following dual vaccination with either vaccine. 4 donors had evidence of previous natural infection which is known to boost vaccine responses. Within the 53 infection-naïve donors the median antibody titre was 4030 U/ml (IQR 1892-8530) following BNT162b2 dual vaccination and 1405 (IQR 469.5- 2543) in the 74 patients after the ChAdOx1 vaccine (p=<0.0001). Spike-specific T cell responses were observed in 30% and 49% of mRNA and ChAdOx1 recipients respectively and median responses were 1.4-times higher in ChAdOx1 vaccinees at 14 vs 20 spots/million respectively (p=0.022).ConclusionDual vaccination with BNT162b2 or ChAdOx1 induces strong humoral immunity in older people following an extended interval protocol. Antibody responses are 2.9-times higher following the mRNA regimen whilst cellular responses are 1.7-times higher with the adenovirus-based vaccine. Differential patterns of immunogenicity are therefore elicited from the two vaccine platforms. It will be of interest to assess the relative stability of immune responses after these homologous vaccine regimens in order to assess the potential need for vaccine boosting. Furthermore, these findings indicate that heterologous vaccine platforms may offer the opportunity to further optimize vaccine responses.


2021 ◽  
Author(s):  
Alexander C. Dowell ◽  
Megan S. Butler ◽  
Elizabeth Jinks ◽  
Gokhan Tut ◽  
Tara Lancaster ◽  
...  

AbstractSARS-CoV-2 infection is generally mild or asymptomatic in children but the biological basis for this is unclear. We studied the profile of antibody and cellular immunity in children aged 3-11 years in comparison with adults. Antibody profiles in children were strong, with high titres against Spike protein and receptor binding domain (RBD). SARS-CoV-2 seroconversion in children strongly boosted antibody responses against seasonal beta-coronaviruses, partly through cross-recognition of the S2 domain, indicating a broad humoral response that was not seen in adults. T cell responses against Spike were also >2-fold higher in children compared to adults and displayed a strong Th1 cytokine profile. SARS-CoV-2 Spike-reactive cellular responses were present in more than half the seronegative children, indicating pre-existing cross-reactive responses or prior sensitization against SARS-CoV-2. Importantly, all children retained high antibody titres and cellular responses for more than 6 months after infection whilst relative antibody waning was seen in adults. Significantly Children at this timepoint also had high antibody titres to B1.1.7, B1.351 and P1 variants. Children thus distinctly generate robust, cross-reactive and sustained immune responses after SARS-CoV-2 infection, with focussed specificity against Spike protein. These observations demonstrate several novel features of SARS-CoV-2-specific immune responses in children and may provide insights into relative clinical protection in this group. Such information on the profile of natural infection will help to guide the introduction of vaccination regimens into the paediatric population.


Author(s):  
Cheryl Keech ◽  
Gary Albert ◽  
Patricia Reed ◽  
Susan Neal ◽  
Joyce S. Plested ◽  
...  

Background NVX-CoV2373 is a recombinant nanoparticle vaccine composed of trimeric full-length SARS-CoV-2 spike glycoproteins. We present the Day 35 primary analysis of our trial of NVX-CoV2373 with or without the saponin-based Matrix-M1 adjuvant in healthy adults. Methods This is a randomized, observer-blinded, placebo-controlled, phase 1 trial in 131 healthy adults. Trial vaccination comprised two intramuscular injections, 21 days apart. Primary outcomes were reactogenicity, safety labs, and immunoglobulin G (IgG) anti-spike protein response. Secondary outcomes included adverse events, wild-type virus neutralizing antibody, and T-cell responses. Results Participants received NVX-CoV2373 with or without Matrix-M1 (n=106) or placebo (n=25). There were no serious adverse events. Reactogenicity was mainly mild in severity and of short duration (mean ≥ 2 days), with second vaccinations inducing greater local and systemic reactogenicity. The adjuvant significantly enhanced immune responses and was antigen dose-sparing, and the two-dose 5μg NVX-CoV2373/Matrix-M1 vaccine induced mean anti-spike IgG and neutralizing antibody responses that exceeded the mean responses in convalescent sera from COVID-19 patients with clinically significant illnesses. The vaccine also induced antigen-specific T cells with a largely T helper 1 (Th1) phenotype. Conclusions NVX-CoV2373/Matrix-M1 was well tolerated and elicited robust immune responses (IgG and neutralization) four-fold higher than the mean observed in COVID-19 convalescent serum from participants with clinical symptoms requiring medical care and induced CD4+ T-cell responses biased toward a Th1 phenotype. These findings suggest that the vaccine may confer protection and support transition to efficacy evaluations to test this hypothesis. (Funded by the Coalition for Epidemic Preparedness Innovations; ClinicalTrials.gov number, NCT04368988).


2021 ◽  
Author(s):  
Mehul Suthar ◽  
Prabhu S Arunachalam ◽  
Mengyun Hu ◽  
Noah Reis ◽  
Meera Trisal ◽  
...  

The development of the highly efficacious mRNA vaccines in less than a year since the emergence of SARS-CoV-2 represents a landmark in vaccinology. However, reports of waning vaccine efficacy, coupled with the emergence of variants of concern that are resistant to antibody neutralization, have raised concerns about the potential lack of durability of immunity to vaccination. We recently reported findings from a comprehensive analysis of innate and adaptive immune responses in 56 healthy volunteers who received two doses of the BNT162b2 vaccination. Here, we analyzed antibody responses to the homologous Wu strain as well as several variants of concern, including the emerging Mu (B.1.621) variant, and T cell responses in a subset of these volunteers at six months (day 210 post-primary vaccination) after the second dose. Our data demonstrate a substantial waning of antibody responses and T cell immunity to SARS-CoV-2 and its variants, at 6 months following the second immunization with the BNT162b2 vaccine. Notably, a significant proportion of vaccinees have neutralizing titers below the detection limit, and suggest a 3rd booster immunization might be warranted to enhance the antibody titers and T cell responses.


2021 ◽  
Author(s):  
Dan H. Barouch ◽  
Kathryn Stephenson ◽  
Jerald Sadoff ◽  
Jingyou Yu ◽  
Aiquan Chang ◽  
...  

Interim immunogenicity and efficacy data for the Ad26.COV2.S vaccine for COVID-19 have recently been reported. We describe here the 8-month durability of humoral and cellular immune responses in 20 individuals who received one or two doses of 5x10^10 vp or 10^11 vp Ad26.COV2.S and in 5 participants who received placebo. We evaluated antibody and T cell responses on day 239, which was 8 months after the single-shot vaccine regimen (N=10) or 6 months after the two-shot vaccine regimen (N=10), although the present study was not powered to compare these regimens. We also report neutralizing antibody responses against the parental SARS-CoV-2 WA1/2020 strain as well as against the SARS-CoV-2 variants D614G, B.1.1.7 (alpha), B.1.617.1 (kappa), B.1.617.2 (delta), P.1 (gamma), B.1.429 (epsilon), and B.1.351 (beta).


2000 ◽  
Vol 74 (17) ◽  
pp. 7787-7793 ◽  
Author(s):  
Tamera M. Pertmer ◽  
Alp E. Oran ◽  
Janice M. Moser ◽  
Catherine A. Madorin ◽  
Harriet L. Robinson

ABSTRACT Maternal antibody is the major form of protection from disease in early life when the neonatal immune system is still immature; however, the presence of maternal antibody also interferes with active immunization, placing infants at risk for severe bacterial and viral infection. We tested the ability of intramuscular and gene gun immunization with DNA expressing influenza virus hemagglutinin (HA) and nucleoprotein (NP) to raise protective humoral and cellular responses in the presence or absence of maternal antibody. Neonatal mice born to influenza virus-immune mothers raised full antibody responses to NP but failed to generate antibody responses to HA. In contrast, the presence of maternal antibody did not affect the generation of long-lived CD8+ T-cell responses to both HA and NP. Thus, maternal antibody did not affect cell-mediated responses but did affect humoral responses, with the ability to limit the antibody response correlating with whether the DNA-expressed immunogen was localized in the plasma membrane or within the cell.


Vaccines ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 144 ◽  
Author(s):  
Eric A. Weaver

Recombinant adenovirus type 5 (rAd) has been used as a vaccine platform against many infectious diseases and has been shown to be an effective vaccine vector. The dose of the vaccine varies significantly from study to study, making it very difficult to compare immune responses and vaccine efficacy. This study determined the immune correlates induced by serial dilutions of rAd vaccines delivered intramuscularly (IM) and intranasally (IN) to mice and rats. When immunized IM, mice had substantially higher antibody responses at the higher vaccine doses, whereas, the IN immunized mice showed a lower response to the higher rAd vaccine doses. Rats did not show dose-dependent antibody responses to increasing vaccine doses. The IM immunized mice and rats also showed significant dose-dependent T cell responses to the rAd vaccine. However, the T cell immunity plateaued in both mice and rats at 109 and 1010 vp/animal, respectively. Additionally, the highest dose of vaccine in mice and rats did not improve the T cell responses. A final vaccine analysis using a lethal influenza virus challenge showed that despite the differences in the immune responses observed in the mice, the mice had very similar patterns of protection. This indicates that rAd vaccines induced dose-dependent immune responses, especially in IM immunized animals, and that immune correlates are not as predictive of protection as initially thought.


Sign in / Sign up

Export Citation Format

Share Document