Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis

2018 ◽  
Vol 24 (7) ◽  
pp. 986-993 ◽  
Author(s):  
Peter Savas ◽  
◽  
Balaji Virassamy ◽  
Chengzhong Ye ◽  
Agus Salim ◽  
...  
2018 ◽  
Vol 24 (12) ◽  
pp. 1941-1941 ◽  
Author(s):  
Peter Savas ◽  
◽  
Balaji Virassamy ◽  
Chengzhong Ye ◽  
Agus Salim ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Agnese Losurdo ◽  
Caterina Scirgolea ◽  
Giorgia Alvisi ◽  
Jolanda Brummelman ◽  
Valentina Errico ◽  
...  

2021 ◽  
Vol 9 (3) ◽  
pp. e001877
Author(s):  
Irfan N Bandey ◽  
Jay R T Adolacion ◽  
Gabrielle Romain ◽  
Melisa Martinez Paniagua ◽  
Xingyue An ◽  
...  

BackgroundAdoptive cell therapy based on the infusion of chimeric antigen receptor (CAR) T cells has shown remarkable efficacy for the treatment of hematologic malignancies. The primary mechanism of action of these infused T cells is the direct killing of tumor cells expressing the cognate antigen. However, understanding why only some T cells are capable of killing, and identifying mechanisms that can improve killing has remained elusive.MethodsTo identify molecular and cellular mechanisms that can improve T-cell killing, we utilized integrated high-throughput single-cell functional profiling by microscopy, followed by robotic retrieval and transcriptional profiling.ResultsWith the aid of mathematical modeling we demonstrate that non-killer CAR T cells comprise a heterogeneous population that arise from failure in each of the discrete steps leading to the killing. Differential transcriptional single-cell profiling of killers and non-killers identified CD137 as an inducible costimulatory molecule upregulated on killer T cells. Our single-cell profiling results directly demonstrate that inducible CD137 is feature of killer (and serial killer) T cells and this marks a different subset compared with the CD107apos (degranulating) subset of CAR T cells. Ligation of the induced CD137 with CD137 ligand (CD137L) leads to younger CD19 CAR T cells with sustained killing and lower exhaustion. We genetically modified CAR T cells to co-express CD137L, in trans, and this lead to a profound improvement in anti-tumor efficacy in leukemia and refractory ovarian cancer models in mice.ConclusionsBroadly, our results illustrate that while non-killer T cells are reflective of population heterogeneity, integrated single-cell profiling can enable identification of mechanisms that can enhance the function/proliferation of killer T cells leading to direct anti-tumor benefit.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Vidya C. Sinha ◽  
Amanda L. Rinkenbaugh ◽  
Mingchu Xu ◽  
Xinhui Zhou ◽  
Xiaomei Zhang ◽  
...  

AbstractThere is an unmet clinical need for stratification of breast lesions as indolent or aggressive to tailor treatment. Here, single-cell transcriptomics and multiparametric imaging applied to a mouse model of breast cancer reveals that the aggressive tumor niche is characterized by an expanded basal-like population, specialization of tumor subpopulations, and mixed-lineage tumor cells potentially serving as a transition state between luminal and basal phenotypes. Despite vast tumor cell-intrinsic differences, aggressive and indolent tumor cells are functionally indistinguishable once isolated from their local niche, suggesting a role for non-tumor collaborators in determining aggressiveness. Aggressive lesions harbor fewer total but more suppressed-like T cells, and elevated tumor-promoting neutrophils and IL-17 signaling, disruption of which increase tumor latency and reduce the number of aggressive lesions. Our study provides insight into tumor-immune features distinguishing indolent from aggressive lesions, identifies heterogeneous populations comprising these lesions, and supports a role for IL-17 signaling in aggressive progression.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A799-A799
Author(s):  
Dhiraj Kumar ◽  
Sreeharsha Gurrapu ◽  
Hyunho Han ◽  
Yan Wang ◽  
Seongyeon Bae ◽  
...  

BackgroundLong non-coding RNAs (lncRNAs) are involved in various biological processes and diseases. Malat1 (metastasis-associated lung adenocarcinoma transcript 1), also known as Neat2, is one of the most abundant and highly conserved nuclear lncRNAs. Several studies have shown that the expression of lncRNA Malat1 is associated with metastasis and serving as a predictive marker for various tumor progression. Metastatic relapse often develops years after primary tumor removal as a result of disseminated tumor cells undergoing a period of latency in the target organ.1–4 However, the correlation of tumor intrinsic lncRNA in regulation of tumor dormancy and immune evasion is largely unknown.MethodsUsing an in vivo screening platform for the isolation of genetic entities involved in either dormancy or reactivation of breast cancer tumor cells, we have identified Malat1 as a positive mediator of metastatic reactivation. To functionally uncover the role of Malat1 in metastatic reactivation, we have developed a knock out (KO) model by using paired gRNA CRISPR-Cas9 deletion approach in metastatic breast and other cancer types, including lung, colon and melanoma. As proof of concept we also used inducible knockdown system under in vivo models. To delineate the immune micro-environment, we have used 10X genomics single cell RNA-seq, ChIRP-seq, multi-color flowcytometry, RNA-FISH and immunofluorescence.ResultsOur results reveal that the deletion of Malat1 abrogates the tumorigenic and metastatic potential of these tumors and supports long-term survival without affecting their ploidy, proliferation, and nuclear speckles formation. In contrast, overexpression of Malat1 leads to metastatic reactivation of dormant breast cancer cells. Moreover, the loss of Malat1 in metastatic cells induces dormancy features and inhibits cancer stemness. Our RNA-seq and ChIRP-seq data indicate that Malat1 KO downregulates several immune evasion and stemness associated genes. Strikingly, Malat1 KO cells exhibit metastatic outgrowth when injected in T cells defective mice. Our single-cell RNA-seq cluster analysis and multi-color flow cytometry data show a greater proportion of T cells and reduce Neutrophils infiltration in KO mice which indicate that the immune microenvironment playing an important role in Malat1-dependent immune evasion. Mechanistically, loss of Malat1 is associated with reduced expression of Serpinb6b, which protects the tumor cells from cytotoxic killing by the T cells. Indeed, overexpression of Serpinb6b rescued the metastatic potential of Malat1 KO cells by protecting against cytotoxic T cells.ConclusionsCollectively, our data indicate that targeting this novel cancer-cell-initiated domino effect within the immune system represents a new strategy to inhibit tumor metastatic reactivation.Trial RegistrationN/AEthics ApprovalFor all the animal studies in the present study, the study protocols were approved by the Institutional Animal Care and Use Committee(IACUC) of UT MD Anderson Cancer Center.ConsentN/AReferencesArun G, Diermeier S, Akerman M, et al., Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev 2016 Jan 1;30(1):34–51.Filippo G. Giancotti, mechanisms governing metastatic dormancy and reactivation. Cell 2013 Nov 7;155(4):750–764.Gao H, Chakraborty G, Lee-Lim AP, et al., The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell 2012b;150:764–779.Gao H, Chakraborty G, Lee-Lim AP, et al., Forward genetic screens in mice uncover mediators and suppressors of metastatic reactivation. Proc Natl Acad Sci U S A 2014 Nov 18; 111(46): 16532–16537.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15061-e15061
Author(s):  
Evanthia T. Roussos Torres ◽  
Dimitrios N Sidiropoulos ◽  
Emily Davis-Marcisak ◽  
Luciane Tsukamoto Kagohara ◽  
Roisin M. Connolly ◽  
...  

e15061 Background: HER2+ breast cancers are known to be less-immunogenic and associated with low response rates to immune checkpoint inhibitors (ICIs). A combination of immunosuppressive signals that prevent cytotoxic T cells from infiltrating the tumor microenvironment (TME) and, low tumor antigen expression, contribute to immunotherapy resistance in this population. Epigenetic modulators can both reexpress tumor antigens and rewire the immunosuppressive environment. We previously used a histone deacetylase inhibitor, entinostat (ENT), in combination with ICIs to reverse the immunosuppressive TME and increase tumor antigen expression in a NeuN HER2+ mouse model of breast cancer. Our results showed that ENT in combination with anti-PD-1, anti-CTLA-4, provided a significant survival benefit compared to either treatment alone. Methods: This current study employs single cell RNA-sequencing on whole tumor samples from mice treated with ICIs and entinostat to investigate the role of epigenetic inhibitors in rewiring the expression of tumor antigens and the cellular landscape of the TME. We generate single cell data over 54,000 cells from 20 tumors treated with entinostat alone or in combination with anti-PD1 and anti-CTLA4 and their combination. Results: Analysis of cells in the TME identifies consistent proportion of monocytes, macrophages, T-cells, Myeloid Derived Suppressor Cells (MDSCs) and Cancer Associated Fibroblasts (CAFs) before and after treatment. Differential expression analysis within the cell types identifies distinct subpopulations and we explore those that are either proportionally higher or lower in each treatment group. Notably, pathway analysis on differentially expressed genes of each cell type identified that combination entinostat and checkpoint treatment increased T cell activation, leukocyte proliferation, myeloid leukocyte and neutrophil migration, and decreased Wnt signaling and histone modifications in tumor cells. These results are being corroborated in patient samples from a parallel clinical trial to provide translational relevance. Conclusions: Our current work provides insights into the transcriptional network within a breast tumor after treatment with ENT+ICIs. We predict our findings will bring us closer to identifying additional therapeutic targets and ultimately improve survival rates of patients with less-immunogenic tumors.


Sign in / Sign up

Export Citation Format

Share Document