scholarly journals Modeling COVID-19 scenarios for the United States

Author(s):  

AbstractWe use COVID-19 case and mortality data from 1 February 2020 to 21 September 2020 and a deterministic SEIR (susceptible, exposed, infectious and recovered) compartmental framework to model possible trajectories of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and the effects of non-pharmaceutical interventions in the United States at the state level from 22 September 2020 through 28 February 2021. Using this SEIR model, and projections of critical driving covariates (pneumonia seasonality, mobility, testing rates and mask use per capita), we assessed scenarios of social distancing mandates and levels of mask use. Projections of current non-pharmaceutical intervention strategies by state—with social distancing mandates reinstated when a threshold of 8 deaths per million population is exceeded (reference scenario)—suggest that, cumulatively, 511,373 (469,578–578,347) lives could be lost to COVID-19 across the United States by 28 February 2021. We find that achieving universal mask use (95% mask use in public) could be sufficient to ameliorate the worst effects of epidemic resurgences in many states. Universal mask use could save an additional 129,574 (85,284–170,867) lives from September 22, 2020 through the end of February 2021, or an additional 95,814 (60,731–133,077) lives assuming a lesser adoption of mask wearing (85%), when compared to the reference scenario.

Author(s):  
◽  
Simon I Hay

The United States (US) has not been spared in the ongoing pandemic of novel coronavirus disease. COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to cause death and disease in all 50 states, as well as significant economic damage wrought by the non-pharmaceutical interventions (NPI) adopted in attempts to control transmission. We use a deterministic, Susceptible, Exposed, Infectious, Recovered (SEIR) compartmental framework to model possible trajectories of SARS-CoV-2 infections and the impact of NPI at the state level. Model performance was tested against reported deaths from 01 February to 04 July 2020. Using this SEIR model and projections of critical driving covariates (pneumonia seasonality, mobility, testing rates, and mask use per capita), we assessed some possible futures of the COVID-19 pandemic from 05 July through 31 December 2020. We explored future scenarios that included feasible assumptions about NPIs including social distancing mandates (SDMs) and levels of mask use. The range of infection, death, and hospital demand outcomes revealed by these scenarios show that action taken during the summer of 2020 will have profound public health impacts through to the year end. Encouragingly, we find that an emphasis on universal mask use may be sufficient to ameliorate the worst effects of epidemic resurgences in many states. Masks may save as many as 102,795 (55,898-183,374) lives, when compared to a plausible reference scenario in December. In addition, widespread mask use may markedly reduce the need for more socially and economically deleterious SDMs.


2020 ◽  
Author(s):  
Ruoyan Sun ◽  
Henna Budhwani

BACKGROUND Though public health systems are responding rapidly to the COVID-19 pandemic, outcomes from publicly available, crowd-sourced big data may assist in helping to identify hot spots, prioritize equipment allocation and staffing, while also informing health policy related to “shelter in place” and social distancing recommendations. OBJECTIVE To assess if the rising state-level prevalence of COVID-19 related posts on Twitter (tweets) is predictive of state-level cumulative COVID-19 incidence after controlling for socio-economic characteristics. METHODS We identified extracted COVID-19 related tweets from January 21st to March 7th (2020) across all 50 states (N = 7,427,057). Tweets were combined with state-level characteristics and confirmed COVID-19 cases to determine the association between public commentary and cumulative incidence. RESULTS The cumulative incidence of COVID-19 cases varied significantly across states. Ratio of tweet increase (p=0.03), number of physicians per 1,000 population (p=0.01), education attainment (p=0.006), income per capita (p = 0.002), and percentage of adult population (p=0.003) were positively associated with cumulative incidence. Ratio of tweet increase was significantly associated with the logarithmic of cumulative incidence (p=0.06) with a coefficient of 0.26. CONCLUSIONS An increase in the prevalence of state-level tweets was predictive of an increase in COVID-19 diagnoses, providing evidence that Twitter can be a valuable surveillance tool for public health.


2020 ◽  
Author(s):  
Paiheng Xu ◽  
Mark Dredze ◽  
David A Broniatowski

BACKGROUND Social distancing is an important component of the response to the COVID-19 pandemic. Minimizing social interactions and travel reduces the rate at which the infection spreads and “flattens the curve” so that the medical system is better equipped to treat infected individuals. However, it remains unclear how the public will respond to these policies as the pandemic continues. OBJECTIVE The aim of this study is to present the Twitter Social Mobility Index, a measure of social distancing and travel derived from Twitter data. We used public geolocated Twitter data to measure how much users travel in a given week. METHODS We collected 469,669,925 tweets geotagged in the United States from January 1, 2019, to April 27, 2020. We analyzed the aggregated mobility variance of a total of 3,768,959 Twitter users at the city and state level from the start of the COVID-19 pandemic. RESULTS We found a large reduction (61.83%) in travel in the United States after the implementation of social distancing policies. However, the variance by state was high, ranging from 38.54% to 76.80%. The eight states that had not issued statewide social distancing orders as of the start of April ranked poorly in terms of travel reduction: Arkansas (45), Iowa (37), Nebraska (35), North Dakota (22), South Carolina (38), South Dakota (46), Oklahoma (50), Utah (14), and Wyoming (53). We are presenting our findings on the internet and will continue to update our analysis during the pandemic. CONCLUSIONS We observed larger travel reductions in states that were early adopters of social distancing policies and smaller changes in states without such policies. The results were also consistent with those based on other mobility data to a certain extent. Therefore, geolocated tweets are an effective way to track social distancing practices using a public resource, and this tracking may be useful as part of ongoing pandemic response planning.


Author(s):  
Bhuma Krishnamachari ◽  
Alexander Morris ◽  
Diane Zastrow ◽  
Andrew Dsida ◽  
Brian Harper ◽  
...  

AbstractCOVID-19, caused by the SARS-CoV-2 virus, has quickly spread throughout the world, necessitating assessment of the most effective containment methods. Very little research exists on the effects of social distancing measures on this pandemic. The purpose of this study was to examine the effects of government implemented social distancing measures on the cumulative incidence rates of COVID-19 in the United States on a state level, and in the 25 most populated cities, while adjusting for socio-demographic risk factors. The social distancing variables assessed in this study were: days to closing of non-essential business; days to stay home orders; days to restrictions on gathering, days to restaurant closings and days to school closing. Using negative binomial regression, adjusted rate ratios and 95% confidence intervals were calculated comparing two levels of a binary variable: “above median value,” and “median value and below” for days to implementing a social distancing measure. For city level data, the effects of these social distancing variables were also assessed in high (above median value) vs low (median value and below) population density cities. For the state level analysis, days to school closing was associated with cumulative incidence, with an adjusted rate ratio of 1.59 (95% CI:1.03,2.44), p=0.04 at 35 days. Some results were counterintuitive, including inverse associations between cumulative incidence and days to closure of non-essential business and restrictions on gatherings. This finding is likely due to reverse causality, where locations with slower growth rates initially chose not to implement measures, and later implemented measures when they absolutely needed to respond to increasing rates of infection. Effects of social distancing measures seemed to vary by population density in cities. Our results suggest that the effect of social distancing measures may differ between states and cities and between locations with different population densities. States and cities need individual approaches to containment of an epidemic, with an awareness of their own structure in terms of crowding and socio-economic variables. In an effort to reduce infection rates, cities may want to implement social distancing in advance of state mandates.


Author(s):  
Nadir Yehya ◽  
Atheendar Venkataramani ◽  
Michael O Harhay

ABSTRACT Background Social distancing is encouraged to mitigate viral spreading during outbreaks. However, the association between distancing and patient-centered outcomes in Covid-19 has not been demonstrated. In the United States social distancing orders are implemented at the state level with variable timing of onset. Emergency declarations and school closures were two early statewide interventions. Methods To determine whether later distancing interventions were associated with higher mortality, we performed a state-level analysis in 55,146 Covid-19 non-survivors. We tested the association between timing of emergency declarations and school closures with 28-day mortality using multivariable negative binomial regression. Day 1 for each state was set to when they recorded ≥ 10 deaths. We performed sensitivity analyses to test model assumptions. Results At time of analysis, 37 of 50 states had ≥ 10 deaths and 28 follow-up days. Both later emergency declaration (adjusted mortality rate ratio [aMRR] 1.05 per day delay, 95% CI 1.00 to 1.09, p=0.040) and later school closure (aMRR 1.05, 95% CI 1.01 to 1.09, p=0.008) were associated with more deaths. When assessing all 50 states and setting day 1 to the day a state recorded its first death, delays in declaring an emergency (aMRR 1.05, 95% CI 1.01 to 1.09, p=0.020) or closing schools (aMRR 1.06, 95% CI 1.03 to 1.09, p<0.001) were associated with more deaths. Results were unchanged when excluding New York and New Jersey. Conclusions Later statewide emergency declarations and school closure were associated with higher Covid-19 mortality. Each day of delay increased mortality risk 5 to 6%.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 1548-1548
Author(s):  
Yu-Che Lee ◽  
Ko-Yun Chang ◽  
Judith Hurley

1548 Background: Breast cancer is the most commonly diagnosed cancer and second leading cause of cancer deaths among women in the United States. The cancer mortality-to-incidence ratio (MIR) provides a population-based indicator of cancer survival and has been established previously to evaluate healthcare variations among different countries. We aim to evaluate the association, which has not been investigated before, between MIR of breast cancer and state-level health disparities in the United States. Methods: We used United States Cancer Statistics (USCS) database to calculate 6-year average of MIRs for breast cancer from 2010 to 2015. America’s Health Rankings (AHR) is a platform using weighted measures in 5 different categories (Behaviors, Community & Environment, Policy, Clinical Care and Outcomes) to determine annual state health rankings. Six-year average (2010-2015) of health uninsured rate by state was obtained from the U.S. Census Bureau and 5-year average (2010-2014) of health spending per capita by state was obtained from Centers for Medicare & Medicaid Services. The correlations between breast cancer MIRs and state health variables were calculated by linear regression analyses. Results: From 2010 through 2015, 1,390,357 females were diagnosed with breast cancer and 246,671 females died from breast cancer in the United States. The 6-year average of age-adjusted incidence rate, mortality rate and MIRs were 124.2 ± 1.3 per 100,000 population, 21.1 ± 0.6 per 100,000 and 0.170 ± 0.007, respectively. Among fifty states we included for analyses, Hawaii had the lowest MIR (0.116 ± 0.014) and Nevada had the highest MIR (0.204 ± 0.004). AHR showed Hawaii had the highest health ranking (No. 1) whereas Louisiana had the lowest health ranking (No. 50) in 2015. In our analysis, states with better health rankings, lower health uninsured rates and higher health spending per capita were significantly correlated with lower MIRs (R2 = 0.695, 0.453 and 0.253, respectively; all P < 0.001). Conclusions: The difference of MIRs for breast cancer was strongly associated with state health diversities. These findings suggest that MIR of breast cancer can be an applicable measure to evaluate and reflect the state-level health disparities in the United States. [Table: see text]


2021 ◽  
Vol 9 ◽  
Author(s):  
Abba B. Gumel ◽  
Enahoro A. Iboi ◽  
Calistus N. Ngonghala ◽  
Gideon A. Ngwa

A novel coronavirus emerged in December of 2019 (COVID-19), causing a pandemic that inflicted unprecedented public health and economic burden in all nooks and corners of the world. Although the control of COVID-19 largely focused on the use of basic public health measures (primarily based on using non-pharmaceutical interventions, such as quarantine, isolation, social-distancing, face mask usage, and community lockdowns) initially, three safe and highly-effective vaccines (by AstraZeneca Inc., Moderna Inc., and Pfizer Inc.), were approved for use in humans in December 2020. We present a new mathematical model for assessing the population-level impact of these vaccines on curtailing the burden of COVID-19. The model stratifies the total population into two subgroups, based on whether or not they habitually wear face mask in public. The resulting multigroup model, which takes the form of a deterministic system of nonlinear differential equations, is fitted and parameterized using COVID-19 cumulative mortality data for the third wave of the COVID-19 pandemic in the United States. Conditions for the asymptotic stability of the associated disease-free equilibrium, as well as an expression for the vaccine-derived herd immunity threshold, are rigorously derived. Numerical simulations of the model show that the size of the initial proportion of individuals in the mask-wearing group, together with positive change in behavior from the non-mask wearing group (as well as those in the mask-wearing group, who do not abandon their mask-wearing habit) play a crucial role in effectively curtailing the COVID-19 pandemic in the United States. This study further shows that the prospect of achieving vaccine-derived herd immunity (required for COVID-19 elimination) in the U.S., using the Pfizer or Moderna vaccine, is quite promising. In particular, our study shows that herd immunity can be achieved in the U.S. if at least 60% of the population are fully vaccinated. Furthermore, the prospect of eliminating the pandemic in the U.S. in the year 2021 is significantly enhanced if the vaccination program is complemented with non-pharmaceutical interventions at moderate increased levels of compliance (in relation to their baseline compliance). The study further suggests that, while the waning of natural and vaccine-derived immunity against COVID-19 induces only a marginal increase in the burden and projected time-to-elimination of the pandemic, adding the impacts of therapeutic benefits of the vaccines into the model resulted in a dramatic reduction in the burden and time-to-elimination of the pandemic.


2021 ◽  
Author(s):  
Michael J. Ahlers ◽  
Hilary J. Aralis ◽  
Wilson L. Tang ◽  
Jeremy B. Sussman ◽  
Gregg C. Fonarow ◽  
...  

ABSTRACTBackgroundNon-pharmaceutical interventions (NPIs) are mitigation strategies used to reduce the spread of transmissible diseases. The relative effectiveness of specific NPIs remains uncertain.MethodsWe used state-level Coronavirus disease 2019 (COVID-19) case and mortality data between January 19, 2020 and March 7, 2021 to model NPI policy effectiveness. Empirically derived breakpoints in case and mortality velocities were used to identify periods of stable, decreasing, or increasing COVID-19 burden. The associations between NPI adoption and subsequent decreases in case or death velocities were estimated using generalized linear models accounting for weekly variability shared across states. State-level NPI policies included: stay at home order, indoor public gathering ban (mild >10 or severe ≤10), indoor restaurant dining ban, and public mask mandate.Results28,602,830 cases and 511,899 deaths were recorded. The odds of a decrease in COVID-19 case velocity were significantly elevated for stay at home (OR 2.02, 95% CI 1.63-2.52), indoor dining ban (OR 1.62, 95% CI 1.25-2.10), public mask mandate (OR 2.18, 95% CI 1.47-3.23), and severe gathering ban (OR 1.68, 95% CI 1.31-2.16). In mutually adjusted models, odds remained elevated for stay at home (AOR 1.47, 95% CI 1.04-2.07) and public mask mandate (AOR = 2.27, 95% CI 1.51-3.41). Stay at home (OR 2.00, 95% CI 1.53-2.62; AOR 1.89, 95% CI 1.25-2.87) was also associated with greater likelihood of decrease in death velocity in unadjusted and adjusted models.ConclusionsNPIs employed in the U.S. during the COVID-19 pandemic, most significantly stay at home orders, were associated with decreased COVID-19 burden.


2020 ◽  
Author(s):  
Weihsueh A. Chiu ◽  
Rebecca Fischer ◽  
Martial L. Ndeffo-Mbah

Abstract Social distancing measures have been implemented in the United States (US) since March 2020, to mitigate the spread of SARS-CoV-2, the causative agent of COVID-19. However, by mid-May most states began relaxing these measures to support the resumption of economic activity, even as disease incidence continued to increase in many states. To evaluate the impact of relaxing social distancing restrictions on COVID-19 dynamics and control in the US, we developed a transmission dynamic model and calibrated it to US state-level COVID-19 cases and deaths from March to June 20th, 2020, using Bayesian methods. We used this model to evaluate the impact of reopening, social distancing, testing, contact tracing, and case isolation on the COVID-19 epidemic in each state. We found that using stay-at-home orders, most states were able to curtail their COVID-19 epidemic curve by reducing and achieving an effective reproductive number below 1. But by June 20th, 2020, only 19 states and the District of Columbia were on track to curtail their epidemic curve with a 75% confidence, at current levels of reopening. Of the remaining 31 states, 24 may have to double their current testing and/or contact tracing rate to curtail their epidemic curve, and seven need to further restrict social contact by 25% in addition to doubling their testing and contact tracing rates. When social distancing restrictions are being eased, greater state-level testing and contact tracing capacity remains paramount for mitigating the risk of large-scale increases in cases and deaths.


10.2196/21499 ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. e21499 ◽  
Author(s):  
Paiheng Xu ◽  
Mark Dredze ◽  
David A Broniatowski

Background Social distancing is an important component of the response to the COVID-19 pandemic. Minimizing social interactions and travel reduces the rate at which the infection spreads and “flattens the curve” so that the medical system is better equipped to treat infected individuals. However, it remains unclear how the public will respond to these policies as the pandemic continues. Objective The aim of this study is to present the Twitter Social Mobility Index, a measure of social distancing and travel derived from Twitter data. We used public geolocated Twitter data to measure how much users travel in a given week. Methods We collected 469,669,925 tweets geotagged in the United States from January 1, 2019, to April 27, 2020. We analyzed the aggregated mobility variance of a total of 3,768,959 Twitter users at the city and state level from the start of the COVID-19 pandemic. Results We found a large reduction (61.83%) in travel in the United States after the implementation of social distancing policies. However, the variance by state was high, ranging from 38.54% to 76.80%. The eight states that had not issued statewide social distancing orders as of the start of April ranked poorly in terms of travel reduction: Arkansas (45), Iowa (37), Nebraska (35), North Dakota (22), South Carolina (38), South Dakota (46), Oklahoma (50), Utah (14), and Wyoming (53). We are presenting our findings on the internet and will continue to update our analysis during the pandemic. Conclusions We observed larger travel reductions in states that were early adopters of social distancing policies and smaller changes in states without such policies. The results were also consistent with those based on other mobility data to a certain extent. Therefore, geolocated tweets are an effective way to track social distancing practices using a public resource, and this tracking may be useful as part of ongoing pandemic response planning.


Sign in / Sign up

Export Citation Format

Share Document