scholarly journals EZH2-mediated epigenetic silencing of TIMP2 promotes ovarian cancer migration and invasion

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Xiaoqing Yi ◽  
Jianfeng Guo ◽  
Jing Guo ◽  
Si Sun ◽  
Ping Yang ◽  
...  
2021 ◽  
Vol 112 (2) ◽  
Author(s):  
Xia LIU ◽  
Zhen MENG ◽  
Yougang XING ◽  
Qun ZHONG ◽  
Xingfeng ZHANG ◽  
...  

2020 ◽  
Vol 20 (9) ◽  
pp. 689-699
Author(s):  
Xuemeng Lei ◽  
Xukun Li ◽  
Hongyan Chen ◽  
Zhihua Liu

Background: Ubiquitin specific protease 48 (USP48) is a member of the deubiquitinating enzymes (DUBs) family. However, the function of USP48 in ovarian cancer remains unclear. Objective: The present study reveals that USP48 knockdown could significantly inhibit cell migration and invasion in ES2, 3AO and A2780 cells, without affecting cell proliferation. Methods: After carboplatin (CBP) treatment, the USP48 ablation increases the apoptosis rate, and the cleaved PARP and cleaved caspase 3 expression levels in ES2, 3AO and A2780 cells. The subcutaneous tumor and intraperitoneally injected experiments demonstrated that the USP48 knockdown significantly increases responsiveness to CBP, and alleviates the metastasis in vivo. Meanwhile, USP48 deficiency results in the improved survival of mice. Results: Finally, the analysis of clinical samples and the TCGA and Kaplan-Meier Plot database revealed that the high expression of USP48 in ovarian cancer patients is associated with poor survival and resistance to CBP therapy. Conclusion: In summary, USP48 may be a potential therapeutic target for ovarian cancer patients.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Huan Lu ◽  
Guanlin Zheng ◽  
Xiang Gao ◽  
Chanjuan Chen ◽  
Min Zhou ◽  
...  

Abstract Background Propofol is a kind of common intravenous anaesthetic agent that plays an anti-tumor role in a variety of cancers, including ovarian cancer. However, the working mechanism of Propofol in ovarian cancer needs further exploration. Methods The viability and metastasis of ovarian cancer cells were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and transwell assays. Flow cytometry was used to evaluate the cell cycle and apoptosis. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine the abundance of circular RNA vacuolar protein sorting 13 homolog C (circVPS13C) and microRNA-145 (miR-145). The target relationship between miR-145 and circVPS13C was predicted by circinteractome database and verified by dual-luciferase reporter assay, RNA-binding protein immunoprecipitation (RIP) assay and RNA-pull down assay. Western blot assay was used to detect the levels of phosphorylated extracellular regulated MAP kinase (p-ERK), ERK, p-MAP kinse-ERK kinase (p-MEK) and MEK, in ovarian cancer cells. Results Propofol treatment suppressed the viability, cell cycle and motility and elevated the apoptosis rate of ovarian cancer cells. Propofol up-regulated miR-145 in a dose-dependent manner. Propofol exerted an anti-tumor role partly through up-regulating miR-145. MiR-145 was a direct target of circVPS13C. Propofol suppressed the progression of ovarian cancer through up-regulating miR-145 via suppressing circVPS13C. Propofol functioned through circVPS13C/miR-145/MEK/ERK signaling in ovarian cancer cells. Conclusion Propofol suppressed the proliferation, cell cycle, migration and invasion and induced the apoptosis of ovarian cancer cells through circVPS13C/miR-145/MEK/ERK signaling in vitro.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qingjuan Meng ◽  
Ningning Wang ◽  
Guanglan Duan

Abstract Background X inactivation-specific transcript (XIST) is the long non-coding RNA (lncRNA) related to cancer, which is involved in the development and progression of various types of tumor. However, up to now, the exact role and molecular mechanism of XIST in the progression of ovarian cancer are not clear. We studied the function of XIST in ovarian cancer cells and clinical tumor specimens. Methods RT-qPCR was performed to detect the expression levels of miR-335 and BCL2L2 in ovarian cancer cells and tissues. MTT and transwell assays were carried out to detect cell proliferation, migration, and invasion abilities. Western blot was performed to analyze the expression level of BCL2L2. The interaction between miR-335 and XIST/BCL2L2 was confirmed using a luciferase reporter assay. Results The inhibition of XIST can inhibit the proliferation invasion and migration of human ovarian cancer cells. In addition, the miR-335/BCL2L2 axis was involved in the functions of XIST in ovarian cancer cells. These results suggested that XIST could regulate tumor proliferation and invasion and migration via modulating miR-335/BCL2L2. Conclusion XIST might be a carcinogenic lncRNA in ovarian cancer by regulating miR-335, and it can serve as a therapeutic target in human ovarian cancer.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Mei Ji ◽  
Zhao Zhao ◽  
Yue Li ◽  
Penglin Xu ◽  
Jia Shi ◽  
...  

AbstractRNASET2 (Ribonuclease T2) functions as a tumor suppressor in preventing ovarian tumorigenesis. However, the mechanisms underlying the regulation of RNASET2 protein are completely unknown. Here we identified the F-box protein FBXO6, a substrate recognition subunit of an SCF (Skp1-Cul1-F-box protein) complex, as the ubiquitin E3 ligase for RNASET2. We found that the interaction between FBXO6 and RNASET2 induced RNASET2 instability through the ubiquitin-mediated proteasome degradation pathway. FBXO6 promoted K48-dependent ubiquitination of RNASET2 via its FBA domain. Through analysis of the TCGA dataset, we found that FBXO6 was significantly increased in ovarian cancer tissues and the high expression of FBXO6 was related to the poor overall survival (OS) of ovarian cancer patients at advanced stages. An inverse correlation between the protein levels of FBXO6 and RNASET2 was observed in clinic ovarian cancer samples. Depletion of FBXO6 promoted ovarian cancer cells proliferation, migration, and invasion, which could be partially reversed by RNASET2 silencing. Thus, our data revealed a novel FBXO6-RNASET2 axis, which might contribute to the development of ovarian cancer. We propose that inhibition of FBXO6 might represent an effective therapeutic strategy for ovarian cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document