Abstract B22: Beta-arrestin2-CARMA3 signaling axis plays critical roles in lysophosphatidic acid-induced ovarian cancer migration and invasion

Author(s):  
Jiyuan Sun ◽  
Jingli Cai ◽  
Feng Yumei
Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3289
Author(s):  
Mi-Jeong Kim ◽  
Yoon Min ◽  
Juhee Son ◽  
Ji Young Kim ◽  
Ji Su Lee ◽  
...  

TRAF6-BECN1 signaling axis is critical for autophagy induction and functionally implicated in cancer progression. Here, we report that AMP-activated protein kinase alpha 1 (AMPKα1, PRKAA1) is positively involved in autophagy induction and cancer progression by regulating TRAF6-BECN1 signaling axis. Mechanistically, AMPKα1 interacted with TRAF6 and BECN1. It also enhanced ubiquitination of BECN1 and autophagy induction. AMPKα1-knockout (AMPKα1KO) HEK293T or AMPKα1-knockdown (AMPKα1KD) THP-1 cells showed impaired autophagy induced by serum starvation or TLR4 (Toll-like receptor 4) stimulation. Additionally, AMPKα1KD THP-1 cells showed decreases of autophagy-related and autophagosome-related genes induced by TLR4. AMPKα1KO A549 cells exhibited attenuation of cancer migration and invasion induced by TLR4. Moreover, primary non-small cell lung cancers (NSCLCs, n = 6) with low AMPKαl levels showed markedly decreased expression of genes related to autophagy, cell migration and adhesion/metastasis, inflammation, and TLRs whereas these genes were significantly upregulated in NSCLCs (n = 5) with high AMPKαl levels. Consistently, attenuation of cancer migration and invasion could be observed in AMPKα1KO MDA-MB-231 and AMPKα1KO MCF-7 human breast cancer cells. These results suggest that AMPKα1 plays a pivotal role in cancer progression by regulating the TRAF6-BECN1 signaling axis for autophagy induction.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Xiaoqing Yi ◽  
Jianfeng Guo ◽  
Jing Guo ◽  
Si Sun ◽  
Ping Yang ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Hadil Onallah ◽  
Ben Davidson ◽  
Reuven Reich

Lysophosphatidic acid (LPA) is a bioactive phospholipid with mitogenic and growth factor-like activities affecting cell invasion, cancer progression, and resistance. It is produced mainly by autotaxin and acts on six G-protein-coupled receptors, LPAR1-6. LPA has recently been implicated as a growth factor present in ascites of ovarian cancer patients. However, mitogenic pathways stimulated by LPA via its receptors may involve any novel, thus far uncharacterized, signaling pathway(s). Here we show that three LPA receptors are involved in tumor progression by activation of both the AKT and ERK signaling pathways. CRISPR-edited LPAR2 and LPAR3 knockouts have opposing effects on ERK activation, whereas LPAR6 is involved in the activation of AKT, affecting cell migration and invasion. Our study identifies specific molecular machinery triggered by LPA and its receptors that modulates tumor cells and can serve as therapeutic target in this malignancy.


2021 ◽  
Vol 112 (2) ◽  
Author(s):  
Xia LIU ◽  
Zhen MENG ◽  
Yougang XING ◽  
Qun ZHONG ◽  
Xingfeng ZHANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document