scholarly journals Propofol suppresses cell viability, cell cycle progression and motility and induces cell apoptosis of ovarian cancer cells through suppressing MEK/ERK signaling via targeting circVPS13C/miR-145 axis

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Huan Lu ◽  
Guanlin Zheng ◽  
Xiang Gao ◽  
Chanjuan Chen ◽  
Min Zhou ◽  
...  

Abstract Background Propofol is a kind of common intravenous anaesthetic agent that plays an anti-tumor role in a variety of cancers, including ovarian cancer. However, the working mechanism of Propofol in ovarian cancer needs further exploration. Methods The viability and metastasis of ovarian cancer cells were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and transwell assays. Flow cytometry was used to evaluate the cell cycle and apoptosis. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine the abundance of circular RNA vacuolar protein sorting 13 homolog C (circVPS13C) and microRNA-145 (miR-145). The target relationship between miR-145 and circVPS13C was predicted by circinteractome database and verified by dual-luciferase reporter assay, RNA-binding protein immunoprecipitation (RIP) assay and RNA-pull down assay. Western blot assay was used to detect the levels of phosphorylated extracellular regulated MAP kinase (p-ERK), ERK, p-MAP kinse-ERK kinase (p-MEK) and MEK, in ovarian cancer cells. Results Propofol treatment suppressed the viability, cell cycle and motility and elevated the apoptosis rate of ovarian cancer cells. Propofol up-regulated miR-145 in a dose-dependent manner. Propofol exerted an anti-tumor role partly through up-regulating miR-145. MiR-145 was a direct target of circVPS13C. Propofol suppressed the progression of ovarian cancer through up-regulating miR-145 via suppressing circVPS13C. Propofol functioned through circVPS13C/miR-145/MEK/ERK signaling in ovarian cancer cells. Conclusion Propofol suppressed the proliferation, cell cycle, migration and invasion and induced the apoptosis of ovarian cancer cells through circVPS13C/miR-145/MEK/ERK signaling in vitro.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qingjuan Meng ◽  
Ningning Wang ◽  
Guanglan Duan

Abstract Background X inactivation-specific transcript (XIST) is the long non-coding RNA (lncRNA) related to cancer, which is involved in the development and progression of various types of tumor. However, up to now, the exact role and molecular mechanism of XIST in the progression of ovarian cancer are not clear. We studied the function of XIST in ovarian cancer cells and clinical tumor specimens. Methods RT-qPCR was performed to detect the expression levels of miR-335 and BCL2L2 in ovarian cancer cells and tissues. MTT and transwell assays were carried out to detect cell proliferation, migration, and invasion abilities. Western blot was performed to analyze the expression level of BCL2L2. The interaction between miR-335 and XIST/BCL2L2 was confirmed using a luciferase reporter assay. Results The inhibition of XIST can inhibit the proliferation invasion and migration of human ovarian cancer cells. In addition, the miR-335/BCL2L2 axis was involved in the functions of XIST in ovarian cancer cells. These results suggested that XIST could regulate tumor proliferation and invasion and migration via modulating miR-335/BCL2L2. Conclusion XIST might be a carcinogenic lncRNA in ovarian cancer by regulating miR-335, and it can serve as a therapeutic target in human ovarian cancer.


Author(s):  
Ruitao Zhang ◽  
Huirong Shi ◽  
Fang Ren ◽  
Wei Feng ◽  
Yuan Cao ◽  
...  

Abstract Background Downregulation of microRNA-338-3p (miR-338-3p) was detected in many malignant tumors, which indicated miR-338-3p might serve as a role of antioncogene in those cancers. The present study aimed to explore the roles of miR-338-3p in the growth and metastasis of ovarian cancer cells and elaborate the underlying possible molecular mechanism. Methods Multiply biomedical databases query and KEGG pathway enrichment assay were used to infilter possible target genes and downstream pathways regulated by miR-338-3p. Overexpression miR-338-3p lentiviral vectors were transfected into ovarian cancer OVCAR-3 and OVCAR-8 cells, cell proliferation, migration and invasion were analyzed by MTT, colony formation, transwell, Matrigel assay and xenograft mouse model. One 3′-untranslated regions (UTRs) binding target gene of miR-338-3p, MACC1 (MET transcriptional regulator MACC1), and its regulated gene MET and downstream signaling pathway activities were examined by western blot. Results Biomedical databases query indicated that miR-338-3p could target MACC1 gene and regulate Met, downstream Wnt/Catenin beta and MEK/ERK pathways. Rescue of miR-338-3p could inhibit the proliferation, migration and invasion of ovarian cancer cells, and suppress the growth and metastasis of xenograft tumor. Restoration of miR-338-3p could attenuate MACC1 and Met overexpression induced growth, epithelial to mesenchymal transition (EMT) and activities of Wnt/Catenin beta and MEK/ERK signaling in vitro and in vivo. Conclusions The present data indicated that restoration of miR-338-3p could suppress the growth and metastasis of ovarian cancer cells, which might due to the inhibition of proliferation and EMT induced by MACC1, Met and its downstream Wnt/Catenin beta and MEK/ERK signaling pathways.


2021 ◽  
Vol 22 (21) ◽  
pp. 11502
Author(s):  
Maria T. Löblein ◽  
Isabel Falke ◽  
Hans Theodor Eich ◽  
Burkhard Greve ◽  
Martin Götte ◽  
...  

In ovarian cancer, therapy resistance mechanisms complicate cancer cell eradication. Targeting Musashi RNA-binding proteins (MSI) may increase therapeutic efficacy. Database analyses were performed to identify gene expression associations between MSI proteins and key therapy resistance and cancer stem cell (CSC) genes. Then, ovarian cancer cells were subjected to siRNA-based dual knockdown of MSI-1 and MSI-2. CSC and cell cycle gene expression was investigated using quantitative polymerase chain reaction (qPCR), western blots, and flow cytometry. Metabolic activity and chemoresistance were assessed by MTT assay. Clonogenic assays were used to quantify cell survival post-irradiation. Database analyses demonstrated positive associations between MSI proteins and putative CSC markers NOTCH, MYC, and ALDH4A1 and negative associations with NOTCH inhibitor NUMB. MSI-2 expression was negatively associated with the apoptosis regulator p21. MSI-1 and MSI-2 were positively correlated, informing subsequent dual knockdown experiments. After MSI silencing, CSC genes were downregulated, while cell cycle progression was reduced. Metabolic activity was decreased in some cancer cells. Both chemo- and radioresistance were reduced after dual knockdown, suggesting therapeutic potential. Dual knockdown of MSI proteins is a promising venue to impede tumor growth and sensitize ovarian cancer cells to irradiation and chemotherapy.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Wenjing Hu ◽  
Min Li ◽  
Youguo Chen ◽  
Xinxian Gu

Abstract Background Ovarian cancer is the most lethal gynecologic malignancy worldwide. Olaparib, an inhibitor of poly (ADP-ribose) polymerase (PARP), is becoming widely used in ovarian cancer treatment. The overall survival of ovarian cancer has not been significantly changed over the past decades and ovarian cancer has become increasingly resistant to the Olaparib. Ubiquitin-conjugating enzyme E2S (UBE2S) has been proved to promote malignant behaviors in many cancers. However, the function of UBE2S in the development and Olaparib resistance of ovarian cancer are unclear. Materials and methods In this study, we detected the expression of UBE2S in normal fallopian tube (FT) and HGSOC tissues. A2780 and SKOV3 cells were stably transfected with PCMV-UBE2S, PCMV-UBE2S-C95S, UBE2S shRNAs, and negative controls. The CCK8 assay and clonogenic assay were conducted to analyze ovarian cancer proliferation and Olaparib resistance. The transwell assay was performed to determine the migration and invasion of ovarian cancer cells. The relative protein levels of the Wnt/β-catenin signaling pathway were tested using western blot. The ovarian cancer cells were treated with XAV-939 to investigate the role of Wnt/β-catenin signaling pathway in Olaparib resistance. Moreover, we repeated some above procedures in the xenograft model. Results The results demonstrated that UBE2S was highly upregulated in HGSOC and that high UBE2S expression was correlated with poor outcomes in HGSOC. UBE2S promoted ovarian cancer proliferation and drived the migration and invasion of ovarian cancer cells. UBE2S activated the Wnt/β-catenin signaling pathway in ovarian cancer resulting in Olaparib resistance in vitro and in vivo. Furthermore, UBE2S enhanced the proliferation and Olaparib resistance of ovarian cancer in its enzymatic activity dependent manner. Conclusions These data suggest a possible molecular mechanism of proliferation and metastasis of ovarian cancer and highlight the potential role of UBE2S as a therapeutic target in ovarian cancer.


2018 ◽  
Vol 49 (4) ◽  
pp. 1289-1303 ◽  
Author(s):  
Lei  Chang ◽  
Ruixia Guo ◽  
Zhongfu Yuan ◽  
Huirong Shi ◽  
Dongya Zhang

Background/Aims: The long noncoding RNA homeobox (HOX) transcript antisense intergenic RNA (HOTAIR) has been demonstrated to be a vital modulator in the proliferation and metastasis of ovarian cancer cells, but its potential molecular mechanism remains to be elucidated. In the current study, we aimed to uncover the biological role of lncRNA HOTAIR and its underlying regulatory mechanism in the progression and metastasis of ovarian cancer. Methods: HOTAIR expression was detected by quantitative RT-PCR (qRT-PCR) and northern blotting. The SKOV3 ovarian cancer cell line was chosen for the subsequent assays. In addition, the molecular mRNA and protein expression levels were examined by qRT-PCR and western blotting. The competitive endogenous RNA (ceRNA) mechanism was validated by bioinformatics analysis and a dual luciferase reporter gene assay. Results: HOTAIR expression was significantly higher in ovarian carcinoma tissues and cell lines than in the control counterparts. Both CCND1 and CCND2 were downstream targets of miR-206. The inhibition of HOTAIR elevated the expression of miR-206 and inhibited the expression of CCND1 and CCND2. Moreover, CCND1 and CCND2 were highly expressed in ovarian cancer tissues, and their expression was positively correlated with HOTAIR expression. Finally, the functional assays indicated that the anticancer effects of miR-206 could be rescued by the simultaneous overexpression of either CCND1 or CCND2 in ovarian cancer. Conclusion: HOTAIR enhanced CCND1 and CCND2 expression by negatively modulating miR-206 expression and stimulating the proliferation, cell cycle progression, migration and invasion of ovarian cancer cells.


Phytomedicine ◽  
2016 ◽  
Vol 23 (8) ◽  
pp. 800-809 ◽  
Author(s):  
Le-Le Zhang ◽  
Yu-Lian Xu ◽  
Zheng-Hai Tang ◽  
Xiao-Huang Xu ◽  
Xin Chen ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jie Li ◽  
Songlin Zhang ◽  
Lei Wu ◽  
Meili Pei ◽  
Yu Jiang

AbstractOvarian cancer is the first leading cause of death in gynecological cancers. The continuous survival and metastasis of cancer cells are the main causes of death and poor prognosis in patients with ovarian cancer. Berberine is an effective component extracted from the rhizomes of coptis chinensis and phellodendron chinensis. In our study, we aim to explore the molecular mechanism underlying the regulation of proliferation, migration and invasion by berberine in ovarian cancer cells. CCK8 assay was used for detection of proliferative capacity of SKOV3 and 3AO cells. Wound healing assay was used to estimate cell migration and transwell assay was used to assess cell invasion. The mRNA expression of miR-145 and MMP16 were examined by quantitative real-time polymerase chain reaction (qRT-PCR). The protein level of MMP16 was detected by western blot analysis. In addition, luciferase reporter assays were used to demonstrate MMP16 was a target of miR-145. The results demonstrated berberine inhibited proliferation, migration and invasion, promoted miR-145 expression, and decreased MMP16 expression in SKOV3 and 3AO cells. MMP16 was a target of miR-145. Moreover, downregulation of MMP16 contributed to the inhibition of proliferation, migration and invasion by berberine. Together, our results revealed that berberine inhibited proliferation, migration and invasion through miR-145/MMP16 in SKOV3 and 3AO cells, highlighting the potentiality of berberine to be used as a therapeutic agent for ovarian cancer.


Author(s):  
Liguang Zhou ◽  
Jing Liu ◽  
Wen Meng ◽  
Huawei Zhang ◽  
Bo Chen

Background: The anticancer activity of silibinin (SB) has been demonstrated in various cancer cell types. However, its low solubility and poor bioavailability limit its clinical potential in biomedical applications. Microbubbles in combination with ultrasound are promising vehicles for local drug delivery. Objective: The present study determined the antitumour effects and molecular mechanism of silibinin-loaded microbubbles (SBMBs) in combination with ultrasound on ovarian cancer in vitro. Methods: SBMBs were prepared using mechanical vibration. The viability of A2780 cells was determined using the MTT assay. Flow cytometry was performed to detect cell apoptosis and the cell cycle. The expression of receptor tyrosine kinase (RTK)-associated downstream proteins was detected using multiplex assays and Western blots. Results: The present study designed and synthesized SBMBs. SBMBs in combination with ultrasound decreased A2780 cell viability in a dose- and time-dependent manner. The half maximal inhibitory concentration (IC50) showed that the cytotoxicity of the SBMBs was approximately 1.5 times greater than that of the SB in A2780 cells. SBMBs in combination with ultrasound resulted in significantly higher apoptosis efficiency compared to the SB group, and the SBMB population of cells was arrested in the G1/G0 phase. Further experiments demonstrated that SBMBs decreased the expression of signal transducer and activator of transcription 3 (STAT3), Ak strain transforming (AKT), and extracellular signal-regulated kinase (Erk) and had a greater effect than SB in A2780 cells. Inhibitors of AKT, Erk and STAT3 promoted the cytotoxicity of SBMBs. Conclusion: SBMBs in combination with ultrasound may enhance the cytotoxicity efficiency of SB via the promotion of apoptosis and cell cycle arrest in ovarian cancer cells and the inactivation of the STAT3, AKT and Erk signalling pathways.


2020 ◽  
Vol 20 (13) ◽  
pp. 1530-1537 ◽  
Author(s):  
Santhosh Arul ◽  
Harinee Rajagopalan ◽  
Jivitesh Ravi ◽  
Haripriya Dayalan

Background: Ovarian cancer is the fifth most common cause of cancer deaths among women with lesser prognostics. Current treatment options are chemotherapy with platinum and taxane based chemotherapy. β-Caryophyllene (BCP) an essential oil found in many plant species is known to possess an anti-proliferative effect. Objective: We aimed to investigate the antiproliferative, cytotoxic, and apoptotic role of BCP against ovarian cancer cells PA-1 and OAW 42. Methods: The antiproliferative effect of BCP was determined by MTT assay and cell viability by trypan blue exclusion assay. Cell cycle and live/dead cell analyses were performed by flow cytometry to determine cell cycle distribution and apoptosis, respectively. Results: Results of MTT assay proved the anti-proliferative effect of BCP in a dose and time-dependent manner in ovarian cancer cells. Cell cycle analysis showed that BCP induced S Phase arrest in OAW 42 cells. Results of apoptosis assay confirmed the apoptosis inducing potential of BCP in ovarian cancer cells. The apoptosis is mediated by caspase-3 activation and PARP cleavage. Conclusion: The results of our present study prove that BCP exerts its action partly by inducing cell cycle arrest and apoptosis in ovarian cancer. We conclude that BCP is a potential anti-cancer agent.


Sign in / Sign up

Export Citation Format

Share Document