scholarly journals Possible role of the Nipah virus V protein in the regulation of the interferon beta induction by interacting with UBX domain-containing protein1

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Shotaro Uchida ◽  
Ryo Horie ◽  
Hiroki Sato ◽  
Chieko Kai ◽  
Misako Yoneda
Development ◽  
1995 ◽  
Vol 121 (5) ◽  
pp. 1497-1505 ◽  
Author(s):  
A.H. Wikramanayake ◽  
B.P. Brandhorst ◽  
W.H. Klein

During early embryogenesis, the highly regulative sea urchin embryo relies extensively on cell-cell interactions for cellular specification. Here, the role of cellular interactions in the temporal and spatial expression of markers for oral and aboral ectoderm in Strongylocentrotus purpuratus and Lytechinus pictus was investigated. When pairs of mesomeres or animal caps, which are fated to give rise to ectoderm, were isolated and cultured they developed into ciliated embryoids that were morphologically polarized. In animal explants from S. purpuratus, the aboral ectoderm-specific Spec1 gene was activated at the same time as in control embryos and at relatively high levels. The Spec1 protein was restricted to the squamous epithelial cells in the embryoids suggesting that an oral-aboral axis formed and aboral ectoderm differentiation occurred correctly. However, the Ecto V protein, a marker for oral ectoderm differentiation, was detected throughout the embryoid and no stomodeum or ciliary band formed. These results indicated that animal explants from S. purpuratus were autonomous in their ability to form an oral-aboral axis and to differentiate aboral ectoderm, but other aspects of ectoderm differentiation require interaction with vegetal blastomeres. In contrast to S. purpuratus, aboral ectoderm-specific genes were not expressed in animal explants from L. pictus even though the resulting embryoids were morphologically very similar to those of S. purpuratus. Recombination of the explants with vegetal blastomeres or exposure to the vegetalizing agent LiCl restored activity of aboral ectoderm-specific genes, suggesting the requirement of a vegetal induction for differentiation of aboral ectoderm cells.(ABSTRACT TRUNCATED AT 250 WORDS)


2018 ◽  
Vol 92 (6) ◽  
Author(s):  
Maria T. Sánchez-Aparicio ◽  
Leighland J. Feinman ◽  
Adolfo García-Sastre ◽  
Megan L. Shaw

ABSTRACT Paramyxovirus V proteins are known antagonists of the RIG-I-like receptor (RLR)-mediated interferon induction pathway, interacting with and inhibiting the RLR MDA5. We report interactions between the Nipah virus V protein and both RIG-I regulatory protein TRIM25 and RIG-I. We also observed interactions between these host proteins and the V proteins of measles virus, Sendai virus, and parainfluenza virus. These interactions are mediated by the conserved C-terminal domain of the V protein, which binds to the tandem caspase activation and recruitment domains (CARDs) of RIG-I (the region of TRIM25 ubiquitination) and to the SPRY domain of TRIM25, which mediates TRIM25 interaction with the RIG-I CARDs. Furthermore, we show that V interaction with TRIM25 and RIG-I prevents TRIM25-mediated ubiquitination of RIG-I and disrupts downstream RIG-I signaling to the mitochondrial antiviral signaling protein. This is a novel mechanism for innate immune inhibition by paramyxovirus V proteins, distinct from other known V protein functions such as MDA5 and STAT1 antagonism. IMPORTANCE The host RIG-I signaling pathway is a key early obstacle to paramyxovirus infection, as it results in rapid induction of an antiviral response. This study shows that paramyxovirus V proteins interact with and inhibit the activation of RIG-I, thereby interrupting the antiviral signaling pathway and facilitating virus replication.


2018 ◽  
Vol 92 (19) ◽  
Author(s):  
Takayuki Komatsu ◽  
Yukie Tanaka ◽  
Yoshinori Kitagawa ◽  
Naoki Koide ◽  
Yoshikazu Naiki ◽  
...  

ABSTRACT Inflammasomes play a key role in host innate immune responses to viral infection by caspase-1 (Casp-1) activation to facilitate interleukin-1β (IL-1β) secretion, which contributes to the host antiviral defense. The NLRP3 inflammasome consists of the cytoplasmic sensor molecule NLRP3, adaptor protein ASC, and effector protein pro-caspase-1 (pro-Casp-1). NLRP3 and ASC promote pro-Casp-1 cleavage, leading to IL-1β maturation and secretion. However, as a countermeasure, viral pathogens have evolved virulence factors to antagonize inflammasome pathways. Here we report that V gene knockout Sendai virus [SeV V(−)] induced markedly greater amounts of IL-1β than wild-type SeV in infected THP1 macrophages. Deficiency of NLRP3 in cells inhibited SeV V(−)-induced IL-1β secretion, indicating an essential role for NLRP3 in SeV V(−)-induced IL-1β activation. Moreover, SeV V protein inhibited the assembly of NLRP3 inflammasomes, including NLRP3-dependent ASC oligomerization, NLRP3-ASC association, NLRP3 self-oligomerization, and intermolecular interactions between NLRP3 molecules. Furthermore, a high correlation between the NLRP3-binding capacity of V protein and the ability to block inflammasome complex assembly was observed. Therefore, SeV V protein likely inhibits NLRP3 self-oligomerization by interacting with NLRP3 and inhibiting subsequent recruitment of ASC to block NLRP3-dependent ASC oligomerization, in turn blocking full activation of the NLRP3 inflammasome and thus blocking IL-1β secretion. Notably, the inhibitory action of SeV V protein on NLRP3 inflammasome activation is shared by other paramyxovirus V proteins, such as Nipah virus and human parainfluenza virus type 2. We thus reveal a mechanism by which paramyxovirus inhibits inflammatory responses by inhibiting NLRP3 inflammasome complex assembly and IL-1β activation. IMPORTANCE The present study demonstrates that the V protein of SeV, Nipah virus, and human parainfluenza virus type 2 interacts with NLRP3 to inhibit NLRP3 inflammasome activation, potentially suggesting a novel strategy by which viruses evade the host innate immune response. As all members of the Paramyxovirinae subfamily carry similar V genes, this new finding may also lead to identification of novel therapeutic targets for paramyxovirus infection and related diseases.


2015 ◽  
Vol 349 (1-2) ◽  
pp. 249-250 ◽  
Author(s):  
Jessica Frau ◽  
Davide Cossu ◽  
Giancarlo Coghe ◽  
Lorena Lorefice ◽  
Giuseppe Fenu ◽  
...  

2004 ◽  
Vol 78 (10) ◽  
pp. 5358-5367 ◽  
Author(s):  
Jason J. Rodriguez ◽  
Cristian D. Cruz ◽  
Curt M. Horvath

ABSTRACT The V proteins of Nipah virus and Hendra virus have been demonstrated to bind to cellular STAT1 and STAT2 proteins to form high-molecular-weight complexes that inhibit interferon (IFN)-induced antiviral transcription by preventing STAT nuclear accumulation. Analysis of the Nipah virus V protein has revealed a region between amino acids 174 and 192 that functions as a CRM1-dependent nuclear export signal (NES). This peptide is sufficient to complement an export-defective human immunodeficiency virus Rev protein, and deletion and substitution mutagenesis revealed that this peptide is necessary for both V protein shuttling and cytoplasmic retention of STAT1 and STAT2 proteins. However, the NES is not required for V-dependent IFN signaling inhibition. IFN signaling is blocked primarily by interaction between Nipah virus V residues 100 to 160 and STAT1 residues 509 to 712. Interaction with STAT2 requires a larger Nipah virus V segment between amino acids 100 and 300, but deletion of residues 230 to 237 greatly reduced STAT2 coprecipitation. Further, V protein interactions with cellular STAT1 is a prerequisite for STAT2 binding, and sequential immunoprecipitations demonstrate that V, STAT1, and STAT2 can form a tripartite complex. These findings characterize essential regions for Henipavirus V proteins that represent potential targets for therapeutic intervention.


2004 ◽  
Vol 10 (5) ◽  
pp. 499-506 ◽  
Author(s):  
Ying CQ Zang ◽  
Sheri M Skinner ◽  
Rachel R Robinson ◽  
Sufang Li ◽  
Victor M Rivera ◽  
...  

Interferon beta (IFN beta) has complex immune regulatory properties that contribute to its treatment effect on multiple sclerosis (MS). In this study, we investigated the role of IFN beta in differentiation and functional properties of monocytes and monocyte-derived dendritic cells that are critical to the inflammatory process in MS. The results revealed that IFN beta inhibited intracellular production of interleukin (IL)-1b (PB/0.01) in both monocytes exposed toin vitro treatment of IFN beta and monocytes analysedex vivo from MS patients treated with IFN beta. IFN beta was shown to modulate differentiation of monocytes into dendritic cells in the presence of IL-4 and GM-CSF, which resulted in a delayed differentiation process. Furthermore, it characteristically altered the phenotypic features of differentiated dendritic cells by inhibiting the expression of CD1a, CD11b, CD11c, CD123 and CD209 while upregulating costimulatory molecules, such as CD86. The selective regulatory properties of IFN beta appeared to render the function of differentiated dendritic cells to produce an increased amount (PB/0.01) while their ability to secrete proinflammatory IL-12 and TGF beta was significantly reduced. The observed collective effects of IFN beta seemed to correlate with Th2 immune deviation. The study has provided new insights into the regulatory mechanisms of IFN beta in the treatment of MS.


Virology ◽  
2006 ◽  
Vol 348 (1) ◽  
pp. 96-106 ◽  
Author(s):  
Christopher L. Parks ◽  
Susan E. Witko ◽  
Cheryl Kotash ◽  
Shuo L. Lin ◽  
Mohinder S. Sidhu ◽  
...  
Keyword(s):  

2006 ◽  
Vol 87 (12) ◽  
pp. 3649-3653 ◽  
Author(s):  
Kathrin Hagmaier ◽  
Nicola Stock ◽  
Steve Goodbourn ◽  
Lin-Fa Wang ◽  
Richard Randall

The V protein of the paramyxovirus Nipah virus (NiV) has been shown to antagonize the interferon (IFN) response in human cells via sequestration of STAT1 and STAT2. This study describes a mutant of the NiV V protein, referred to as V(AAHL), that is unable to antagonize IFN signalling and demonstrates that a single amino acid substitution is responsible for its inactivity. The molecular basis for this was identified as a failure to interact with STAT1 and STAT2. It was also shown that NiV V, but not V(AAHL), was functional as an IFN antagonist in human, monkey, rabbit, dog, horse, pig and bat cells, which suggests that the ability of NiV to block IFN signalling is not a major constraint that prevents this virus from crossing species barriers.


Sign in / Sign up

Export Citation Format

Share Document