scholarly journals Fast, Cost-effective and Energy Efficient Mercury Removal-Recycling Technology

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Mainak Ganguly ◽  
Simon Dib ◽  
Parisa A. Ariya
2015 ◽  
Vol 14 (7) ◽  
pp. 1487-1494 ◽  
Author(s):  
Marco Arnesano ◽  
Gian Marco Revel ◽  
Filippo Pietroni ◽  
Jurgen Frick ◽  
Manuela Reichert ◽  
...  

2015 ◽  
Vol 292 ◽  
pp. 87-94 ◽  
Author(s):  
David Lloyd ◽  
Eva Magdalena ◽  
Laura Sanz ◽  
Lasse Murtomäki ◽  
Kyösti Kontturi

2020 ◽  
Vol 177 ◽  
pp. 03004
Author(s):  
Vladimir Makarov ◽  
Nikolai Makarov ◽  
Alexandr Lifanov ◽  
Artem Materov ◽  
Nikolay Kosarev

Competitive growth of enterprises in the mining and oil and gas industries of the Russian economy, combined with industrial safety requirements, updates the task of developing the design and production methodology for the aerodynamically adaptive turbomachines with a nature-like dominance. Such machines adequately and economically soundly establish the necessary parameters of the air environment in the technological space that implement the concept of optimal subsurface management ecotechnology. This article proposes a production methodology for the energy-efficient turbomachines using the aerodynamic adaptability criterion that determines the relations between the velocity circulation and flow acceleration around the vane cascade profiles as the nature-like dominance of the process for converting the mechanical rotational energy of impeller into the internal energy of the air flow. The Karman theory of bound and free vortices, the Chaplygin-Joukowski-Kutta hypothesis, the conformal mapping method, and curve irregularities are used for development of a mathematical model for controlling the aerodynamic adaptability. It is proved that the control dominant is the intensity of the sources distributed over the turbomachine impeller vane profile that determine the flow diffusivity and as a result the acceleration circulation around the profile. It has been experimentally confirmed that the use of profiles obtained using the proposed technique increases the aerodynamic adaptability coefficient of the turbomachine by 51%, while increasing the area of its cost-effective performance by at least 2 times.


Author(s):  
Anju Gupta ◽  
R K Bathla

With so many people now wearing mobile devices with sensors (such as smartphones), utilizing the immense capabilities of these business mobility goods has become a prospective skill to significant behavioural and ecological sensors. A potential challenge for pervasive context assessment is opportunistic sensing, has been effectively used to a wide range of applications. The sensor cloud combines cloud technology with a wireless sensor, resulting in a scalable and cost-effective computing platform for real-time applications. Because the sensor's battery power is limited and the data centre’s servers consume a significant amount of energy to supply storage, a sensor cloud must be energy efficient. This study provides a Fog-based semantic for enabling these kinds of technologies quickly and successfully. The suggested structure is comprised of fundamental algorithms to help set up and coordinate the fog sensing jobs. It creates effective multihop routes for coordinating relevant devices and transporting acquired sensory data to fog sinks. It was claimed that energy-efficient sensor cloud approaches were categorized into different groups and that each technology was examined using numerous characteristics. The outcomes of a series of thorough test simulation in NS3 to define the practicality of the created console, as well as the proportion of each parameter utilized for each technology, are computed.


Author(s):  
Frank J. Agraz ◽  
John Maneri

The continual rising cost of energy, existing outdated lighting technology, and inefficient lighting designs have given property owners the opportunity to improve their facilities by retrofitting their existing luminaires with an energy efficient lighting system. A lighting retrofit uses the existing electrical infrastructure to replace, relocate, or convert existing luminaires with the latest generation of cost-effective components. New lighting technology has emerged within the last 6 years that generates energy savings of 40% to 50% while maintaining existing light levels. These upgraded and field-tested solutions lower energy consumption, generate a healthy financial return on investment, and can improve both the quality and quantity of light in the task area. As with any other solution, a cost-effective lighting system must be designed and engineered carefully to accommodate the needs of each work space. Simply installing a new lamp into an existing luminaire will not necessarily guarantee substantial energy savings or an improved lighting environment. In any space that uses electric lighting, the lighting designer must evaluate potential solutions for energy consumption, maintenance concerns, delivered light levels, hostile environments, and the overall economic impact of installing and long-term operation of the new system. In this paper, the author will discuss energy efficient lighting design criteria and how a lighting designer properly engineers a retrofit project to deliver energy savings without sacrificing light levels. The discussion includes a summary of both traditional and emerging technologies, and the long-term impact on energy consumption, maintenance, return on investment, lighting quality, and delivered light levels. Paper published with permission.


A Mobile Ad-hoc Network (MANET) is a wireless network created without any static infrastructure and works in a decentralized fashion. The nodes are independent and communicated with each other by self-organizing among those nodes to provide the global network functionality. It draws more attention in recent years because of enormous applications and its cost-effective implementation. The communication among these nodes entirely depends on the routing path and battery power. Many researches have concentrated only on finding the shortest path and throughput in this area. The energy-efficient routing has a lot of scope and important factor to be considered for routing in MANET’s. In this article, the current energy-efficient routing protocols will be extensively reviewed and results tabulated. Finally, the paper proposes open areas in which the performance of the network may be improved by considering energy-efficient networks, achieving stability in the network and finding better routes.


Sign in / Sign up

Export Citation Format

Share Document