scholarly journals Energy Efficient Lighting Design Criteria: Cost-Effective Solutions in an Industrial Environment

Author(s):  
Frank J. Agraz ◽  
John Maneri

The continual rising cost of energy, existing outdated lighting technology, and inefficient lighting designs have given property owners the opportunity to improve their facilities by retrofitting their existing luminaires with an energy efficient lighting system. A lighting retrofit uses the existing electrical infrastructure to replace, relocate, or convert existing luminaires with the latest generation of cost-effective components. New lighting technology has emerged within the last 6 years that generates energy savings of 40% to 50% while maintaining existing light levels. These upgraded and field-tested solutions lower energy consumption, generate a healthy financial return on investment, and can improve both the quality and quantity of light in the task area. As with any other solution, a cost-effective lighting system must be designed and engineered carefully to accommodate the needs of each work space. Simply installing a new lamp into an existing luminaire will not necessarily guarantee substantial energy savings or an improved lighting environment. In any space that uses electric lighting, the lighting designer must evaluate potential solutions for energy consumption, maintenance concerns, delivered light levels, hostile environments, and the overall economic impact of installing and long-term operation of the new system. In this paper, the author will discuss energy efficient lighting design criteria and how a lighting designer properly engineers a retrofit project to deliver energy savings without sacrificing light levels. The discussion includes a summary of both traditional and emerging technologies, and the long-term impact on energy consumption, maintenance, return on investment, lighting quality, and delivered light levels. Paper published with permission.

2018 ◽  
Vol 42 ◽  
pp. 01003
Author(s):  
Sentagi Sesotya Utami ◽  
Faridah ◽  
Na’im A. Azizi ◽  
Erlin Kencanawati ◽  
M. Akbar Tanjung ◽  
...  

Current studies conducted by JICA, AMPRI and IFC-World Bank, reported that large commercial buildings in Indonesia are not energy and water efficient. One of the cause is the lack of regulation. Meanwhile, effective regulations to reduce energy and water consumption are the concern mostly in a new building to obtain a building permit. This strategy is understandable as retrofitting existing buildings are often more difficult to be implemented, and enforcement is still a major issue in Indonesia. Local governments are currently working on streamlining building permit process as well as developing an online monitoring system for existing buildings. By applying a Building Energy Management System (BEMS) enables to reduce energy consumption up to 15%. An energy monitoring system was designed and installed through this research for Department of Nuclear Engineering and Engineering Physics (DNEEP) building, Faculty of Engineering, Universitas Gadjah Mada. It is a 20 years old two-story building used for educational activities, which consist of classrooms, laboratories, offices and storage spaces. An audit energy was done recently in 2015 where an energy consumption of 261.299,636 kWh/year.m2 was reported. In the existing condition, a power meter is inaccessible and therefore, the only feedback of occupancy behavior in the energy consumption is through the electricity bill. The previous study has shown that building occupants would behave more efficiently if the amount of energy used is notified, and the amount of energy savings are recorded. However, these energy monitoring systems are considered expensive and uniquely tailored for every building. This research aims to design and install a cost effective BEMS based on occupant’s satisfactory assessment of the lighting, acoustics, and air conditioning quality. The data will be used as a decision supporting system (DSS) by building management through the use of a GUI. The design of the interface was based on a survey result from the prospective users. Installed energy monitoring system uses a current sensor with an accuracy of 98% and a precision of 0.04 A while the voltage sensor with an accuracy of 98% and a precision of 0.58 V. The performance testing shows that the number of web clients influences delay of data transmission. The result of the survey shows that GUI is categorized as fair in design without a significant difference between the perceptions of users with and without survey supervision.


Author(s):  
Alexandra Bousia ◽  
Elli Kartsakli ◽  
Angelos Antonopoulos ◽  
Luis Alonso ◽  
Christos Verikoukis

Reducing the energy consumption in wireless networks has become a significant challenge, not only because of its great impact on the global energy crisis, but also because it represents a noteworthy cost for telecommunication operators. The Base Stations (BSs), constituting the main component of wireless infrastructure and the major contributor to the energy consumption of mobile cellular networks, are usually designed and planned to serve their customers during peak times. Therefore, they are more than sufficient when the traffic load is low. In this chapter, the authors propose a number of BSs switching off algorithms as an energy efficient solution to the problem of redundancy of network resources. They demonstrate via analysis and by means of simulations that one can achieve reduction in energy consumption when one switches off the unnecessary BSs. In particular, the authors evaluate the energy that can be saved by progressively turning off BSs during the periods when traffic decreases depending on the traffic load variations and the distance between the BS and their associated User Equipments (UEs). In addition, the authors show how to optimize the energy savings of the network by calculating the most energy-efficient combination of switched off and active BSs.


Author(s):  
Saurabh Dixit ◽  
Himanshu Katiyar ◽  
Arun Kumar Singh

There has been a paradigm shift in the field of mobile communication, with an overwhelming increase in data usage. As more and more users are migrating to smartphones, the amount of data being transmitted has increased. However, huge amounts of data and signal propagation are bound to be detrimental to the ecological balance. Long-term evolution (LTE), due to its flexibility and backward compatibility, has emerged as the network of choice for 4G and beyond. In this chapter, the significance of core technologies for LTE network is highlighted, along with the inherent advantage of reducing the energy consumption of cellular network. An energy-efficient design of LTE is proposed that blends the technologies proposed by 3GPP such as adaptive OFDMA with that of MU-MIMO.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6451
Author(s):  
Alexander Koch ◽  
Olaf Teichert ◽  
Svenja Kalt ◽  
Aybike Ongel ◽  
Markus Lienkamp

State of the art powertrain optimization compares the energy consumption of different powertrain configurations based on simulations with fixed driving cycles. However, this approach might not be applicable to future vehicles, since speed advisory systems and automated driving functions offer the potential to adapt the speed profile to minimize energy consumption. This study aims to investigate the potential of powertrain optimization with respect to energy consumption under optimal energy-efficient driving for electric buses. The optimal powertrain configurations of the buses under energy-efficient driving and their respective energy consumptions are obtained using powertrain-specific optimized driving cycles and compared with those of human-driven unconnected buses and buses with non-powertrain-specific optimal speed profiles. Based on the results, new trends in the powertrain design of vehicles under energy-efficient driving are derived. The optimized driving cycles are calculated using a dynamic programming approach. The evaluations were based on the fact that the buses under energy-efficient driving operate in dedicated lanes with vehicle-to-infrastructure (V2I) communication while the unconnected buses operate in mixed traffic. The results indicate that deviating from the optimal powertrain configuration does not have a significant effect on energy consumption for optimized speed profiles; however, the energy savings from an optimized powertrain configuration can be significant when ride comfort is considered. The connected buses under energy-efficient driving operating in dedicated lanes may reduce energy consumption by up to 27% compared to human-driven unconnected buses.


Author(s):  
Didar Tukymbekov ◽  
Ahmet Saymbetov ◽  
Madiyar Nurgaliyev ◽  
Nurzhigit Kuttybay ◽  
Yerkebulan Nalibayev ◽  
...  

2017 ◽  
Vol 25 (6) ◽  
pp. 1006-1019
Author(s):  
U Liqat ◽  
Z Banković ◽  
P Lopez-Garcia ◽  
M V Hermenegildo

Abstract This work addresses the problem of energy-efficient scheduling and allocation of tasks in multicore environments, where the tasks can allow a certain loss in accuracy in the output, while still providing proper functionality and meeting an energy budget. This margin for accuracy loss is exploited by using computing techniques that reduce the work load, and thus can also result in significant energy savings. To this end, we use the technique of loop perforation, that transforms loops to execute only a subset of their original iterations, and integrate this technique into our existing optimization tool for energy-efficient scheduling. To verify that a schedule meets an energy budget, both safe upper and lower bounds on the energy consumption of the tasks involved are needed. For this reason, we use a parametric approach to estimate safe (and tight) energy bounds that are practical for energy verification (and optimization applications). This approach consists in dividing a program into basic (‘branchless’) blocks, establishing the maximal (resp. minimal) energy consumption for each block using an evolutionary algorithm, and combining the obtained values according to the program control flow, by using static analysis to produce energy bound functions on input data sizes. The scheduling tool uses evolutionary algorithms coupled with the energy bound functions for estimating the energy consumption of different schedules. The experiments with our prototype implementation were performed on multicore XMOS chips, but our approach can be adapted to any multicore environment with minor changes. The experimental results show that our new scheduler enhanced with loop perforation improves on the previous one, achieving significant energy savings (31% on average for the test programs) for acceptable levels of accuracy loss.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6038
Author(s):  
Mariano Gallo ◽  
Marilisa Botte ◽  
Antonio Ruggiero ◽  
Luca D’Acierno

We propose a model for optimising driving speed profiles on metro lines to reduce traction energy consumption. The model optimises the cruising speed to be maintained on each section between two stations; the functions that link the cruising speed to the travel time on the section and the corresponding energy consumption are built using microscopic railway simulation software. In addition to formulating an optimisation model and its resolution through a gradient algorithm, the problem is also solved by using a simulation model and the corresponding optimisation module, with which stochastic factors may be included in the problem. The results are promising and show that traction energy savings of over 25% compared to non-optimised operations may be achieved.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2015 ◽  
Author(s):  
Yang-Hsin Fan

Smart cities have hundreds of thousands of devices for tracking data on crime, the environment, and traffic (such as data collected at crossroads and on streets). This results in higher energy usage, as they are recording information persistently and simultaneously. Moreover, a single object tracking device, on a corner at an intersection for example has a limited scope of view, so more object tracking devices are added to broaden the view. As an increasing number of object tracking devices are constructed on streets, their efficient energy consumption becomes a significant issue. This work is concerned with decreasing the energy required to power these systems, and proposes energy-efficient clusters (EECs) of object tracking systems to achieve energy savings. First, we analyze a current object tracking system to establish an equivalent model. Second, we arrange the object tracking system in a cluster structure, which facilitates the evaluation of energy costs. Third, the energy consumption is assessed as either dynamic or static, which is a more accurate system for determining energy consumption. Fourth, we analyze all possible scenarios of the object’s location and the resulting energy consumption, and derive a number of formulas for the fast computation of energy consumption. Finally, the simulation results are reported. These results show the proposed EEC is an effective way to save energy, compared with the energy consumption benchmarks of current technology.


Author(s):  
Jabbar K. Mohammed

The idea of replacing the old lighting system with energy-efficient ones has been given excessive attention, particularly in the territorial and Arabic world. This move is significant for its helpful effects on both the economy and the environment, especially in Iraq which smarts from light-related problems. It correspondingly aids the light distribution offices as it will save them from several light generation troubles and their effects on the hours of electrical power supply. The light consumers will also benefit from reduced bills due to approximately 50% reduction in power consumption by the energy-efficient system. The energy-efficient lighting system has replaced the traditional technical lighting owing to its energy saving capability and environmental friendliness. These problems would enhance the use of efficient energy programmer to reduce energy consumption as the world switches to the use of renewable energy. This study presents the use of modernized lighting system with an emphasis on its economic and environmental benefits. The results are applied by MATLAB version17b prototypical is built to evaluate the behavior of smart lighting street technology and renewable energy to reduce cost and energy consumption. During the study, 100 modernized LED electric lamps of 150W capacity were used to replace 100 High Pressure Sodium (HPS) lamps of 400W. The economic cost of the replacement was calculated based on the price of the LED lamps compared to those of the HPS lamps. The environmental impact was determined by calculating the global cost of the electrical energy consumed by the LED lamps compared to those consumed by the HPS lamps in Iraq.


Author(s):  
Rajesh Kumar Garg, Et. al.

Conventionally, sink node is considered to have large hardware and energy resources; however, many times sink node is working in same conditions as source nodes, especially when deployed for monitoring of the snow environment. In this paper, an effort has been made to practically realize a sink node which is energy efficient and cost effective for monitoring applications. To save energy, the Main Power Module is designed to provide controlled powers to sensors and sub-modules. The paper discusses design aspects of the sink node and its long-term field evaluation with environmental sensors, especially the Snow Depth Sensor of MaxBotix. Field performance of Snow Depth Sensor has been enhanced by Euclidean Minimum Distance filter which improved the correlation of data to 0.997. The proposed design helps to achieve energy consumption of 42.72mWh which is significantly lower than the previous work. The reliable working of the sink node in the long-term field evaluation indicates that snow environment can be monitored at less expense of energy by employing proposed sensors and the specially designed sink node.


Sign in / Sign up

Export Citation Format

Share Document