scholarly journals Evaluation of polypyrrole-modified bioelectrodes in a chemical absorption-bioelectrochemical reduction integrated system for NO removal

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tianjiao Guo ◽  
Chunyan Zhang ◽  
Jingkai Zhao ◽  
Cunhao Ma ◽  
Sujing Li ◽  
...  

Abstract A Chemical absorption-bioelectrochemical reduction (CABER) system is based on Chemical absorption-biological reduction (CABR) system, which aims at NO removal and has been studied in many of our previous works. In this paper, we applied polypyrrole (PPy) on the electrode of bioelectrochemical reactor (BER) of CABER system, which induced a much higher current density in the cyclic voltammetry (CV) curve for the electrode itself and better NO removal rate in the system. In addition, a Microbial Electrolysis Cell (MEC) is constructed to study its strengthening mechanism. Results shows that PPy-MEC has a greater Faraday efficiency and higher reduction rate of Fe(III)EDTA and Fe(II)EDTA-NO in the solution when compared to original Carbon MEC, which confirms the advantage of PPy-modified electrode(s) in the CABER system. The results of this study are reported for illustration of potential of CABER technology and design of low-cost high-efficiency NOx control equipment in the future.

2021 ◽  
Vol 07 ◽  
Author(s):  
Wei Li

: Exploring low-cost, green and safe technologies to provide an alternative to the conventional selective catalytic reduction process is key to the control of NOx emitted from small-scale boilers and other industrial processes. To meet the demand, the chemical absorption-biological reduction integrated system has been developing recently. chemical absorption-biological reduction integrated system applies Fe(II)EDTA for NO absorption and iron-reducing and denitrifying bacteria for absorbent regeneration. Many studies have focused on the enhancements of mass transfer and biological reaction, among which the biological processes were the rate-limiting steps. This review summarizes the current researches on the biological processes in the CABR system, which focuses on the mechanism and enhancement of biochemical reactions, and provides the possible directions of future research.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1732
Author(s):  
Yuanyuan Yu ◽  
Yongjun Sun ◽  
Jun Zhou ◽  
Aowen Chen ◽  
Kinjal J. Shah

In this study, a high-efficiency magnetic heavy metal flocculant MF@AA was prepared based on carboxymethyl chitosan and magnetic Fe3O4. It was characterized by SEM, FTIR, XPS, XRD and VSM, and the Cu(II) removal rate was used as the evaluation basis for the preparation process. The effects of AMPS content, total monomer concentration, photoinitiator concentration and reaction time on the performance of MF@AA flocculation to remove Cu(II) were studied. The characterization results show that MF@AA has been successfully prepared and exhibits good magnetic induction characteristics. The synthesis results show that under the conditions of 10% AMPS content, 35% total monomer concentration, 0.04% photoinitiator concentration, and 1.5 h reaction time, the best yield of MF@AA is 77.69%. The best removal rate is 87.65%. In addition, the response surface optimization of the synthesis process of MF@AA was performed. The optimal synthesis ratio was finally determined as iron content 6.5%, CMFS: 29.5%, AM: 53.9%, AMPS: 10.1%. High-efficiency magnetic heavy metal flocculant MF@AA shows excellent flocculation performance in removing Cu(II). This research provides guidance and ideas for the development of efficient and low-cost flocculation technology to remove Cu(II) in wastewater.


2016 ◽  
Vol 50 (16) ◽  
pp. 8705-8712 ◽  
Author(s):  
Jingkai Zhao ◽  
Yinfeng Xia ◽  
Meifang Li ◽  
Sujing Li ◽  
Wei Li ◽  
...  

2020 ◽  
Vol 993 ◽  
pp. 1445-1449
Author(s):  
Shi Jie Liu ◽  
Su Ping Cui ◽  
Hong Xia Guo ◽  
Ya Li Wang ◽  
Nan Li ◽  
...  

Calcium silicate hydrate gel (CSH) was synthesized by calcium acetate and sodium silicate. The structure and morphology of CSH were characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopy and Scanning electron microscopy. The adsorption performance of CSH was measured by static adsorption method. The results show that CSH has porous structure and large specific surface area, and the optimum reaction conditions is the reaction temperature of 25°C and calcium-silicon ratio of 1.2. It has the maximum adsorption capacity of more than 150 mg/g and the removal rate of more than 86% with Cu2+. And it shows the excellent adsorption performance, even when the concentration of Cu2+ is less than 200mg/L, the removal rate is above 90%. The research may provide a low-cost and high-efficiency adsorbent.


2015 ◽  
Vol 737 ◽  
pp. 557-560
Author(s):  
Hui Yuan Zhong ◽  
Guan Yi Liu ◽  
Jun Xia Li ◽  
Hao Wang

This study used coagulation - ultrafiltration technology for domestic sewage treatment, which was used widely in water supply and secondary treatment with sewage, in order to achieve high efficiency, low-cost, integrated treatment of domestic sewage treatment. This article chooses fly ash coagulant is not only simple preparation process, low cost, and with the traditional aluminum chloride and ferric chloride coagulation effect. The research results show that the coagulation can make the organic particles size distribution to move to larger particles area and significantly reduce colloidal substance. Ultrafiltration membrane system can further remove the coagulation treatment failed to completely remove polymer and part in the process of low molecular substances, to achieve high organic matter removal efficiency. The backwash of ultrafiltration membrane can make membrane flux recovery by about 80%. This system of SS can remove more than 95%, COD removal rate can reach 60% ~ 70%.


2016 ◽  
Vol 693 ◽  
pp. 1082-1089 ◽  
Author(s):  
Rong Quan Wang ◽  
Jian Yong Li ◽  
Yue Ming Liu ◽  
Wen Xi Wang

The heavy belt-grinding is a new machining method, which combined the characters of heavy-duty grinding and belt-grinding together, with high efficiency and low cost. In the present paper the removal rate model of heavy belt-grinding in manufacturing of U71Mn steel is established. It is assumed that the distribution of the abrasive particles protrusion height of the abrasive belt surface closes to Gaussian distribution. The model is presented by calculating the removal volumes of all abrasive grains contributing to cutting action based on the probability theory, elastic-plastic mechanics and abrasive cutting theory. It is analysis that the material removal rate depends essentially on the mechanical properties of the workpiece and the belt and the grinding conditions. It is proportional to the average pressure, belt velocity and the indentation depth and is inverse proportion to the grain size.


Sign in / Sign up

Export Citation Format

Share Document