scholarly journals IgA-deficient humans exhibit gut microbiota dysbiosis despite secretion of compensatory IgM

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jason R. Catanzaro ◽  
Juliet D. Strauss ◽  
Agata Bielecka ◽  
Anthony F. Porto ◽  
Francis M. Lobo ◽  
...  

Abstract Immunoglobulin A is the dominant antibody isotype found in mucosal secretions and enforces host-microbiota symbiosis in mice, yet selective IgA-deficiency (sIgAd) in humans is often described as asymptomatic. Here, we determined the effects of IgA deficiency on human gut microbiota composition and evaluated the possibility that mucosal secretion of IgM can compensate for a lack of secretory IgA. We used 16S rRNA gene sequencing and bacterial cell sorting to evaluate gut microbiota composition and taxa-specific antibody coating of the gut microbiota in 15 sIgAd subjects and matched controls. Despite the secretion of compensatory IgM into the gut lumen, sIgAd subjects displayed an altered gut microbiota composition as compared to healthy controls. These alterations were characterized by a trend towards decreased overall microbial diversity as well as significant shifts in the relative abundances of specific microbial taxa. While secretory IgA in healthy controls targeted a defined subset of the microbiota via high-level coating, compensatory IgM in sIgAd subjects showed less specificity than IgA and bound a broader subset of the microbiota. We conclude that IgA plays a critical and non-redundant role in controlling gut microbiota composition in humans and that secretory IgA has evolved to maintain a diverse and stable gut microbial community.

2018 ◽  
Author(s):  
Jason R Catanzaro ◽  
Juliet D Strauss ◽  
Agata Bielecka ◽  
Anthony F Porto ◽  
Francis M Lobo ◽  
...  

ABSTRACTImmunoglobulin A is the dominant antibody isotype found in mucosal secretions and enforces host-microbiota symbiosis in mice, yet selective IgA-deficiency (sIgAd) is the most common primary immunodeficiency in humans and is often described as asymptomatic. Here, we determined the effects of IgA deficiency on human gut microbiota composition and evaluated the possibility that secretion of IgM can compensate for a lack of secretory IgA. We used 16S rRNA gene sequencing and bacterial cell sorting to evaluate gut microbiota composition and IgA or IgM coating of the gut microbiota in 15 sIgAd subjects and 15 matched controls. Although sIgAd subjects secreted a significant amount of IgM into the intestinal lumen, this was insufficient to fully compensate for the lack of secretory IgA. Indeed, sIgAd subjects displayed an altered gut microbiota composition as compared to healthy controls, which was characterized by a trend towards decreased overall microbial diversity and significant shifts in the relative abundances of specific microbial taxa. While IgA targets a defined subset of the microbiota via high-level coating, compensatory IgM binds a broader subset of the microbiota in a less targeted manner. We conclude that IgA plays a critical and non-redundant role in controlling gut microbiota composition in humans and that secretory IgA has evolved to maintain a diverse and stable gut microbial community that promotes human health, enhances resistance to infection, and is resilient to perturbation.


Author(s):  
Alinne P. Castro ◽  
Keemilyn K. S. Silva ◽  
Claudia S. A. Medeiros ◽  
Fernanda Alves ◽  
Ronaldo C. Araujo ◽  
...  

In addition to its health benefits, exercise training has been pointed out as modulator of the gut microbiota. However, the effects of resistance training (RT) on gut microbiota composition remain unknown. Wistar rats underwent 12 weeks of RT. Body weight, glucose tolerance test, visceral body fat, triglyceride concentration, and food consumption were evaluated. The gut microbiota was analyzed by 16S rRNA gene sequencing. Rats that underwent RT showed lower body weight (p=0.0005), lower fat content (p=0.02), and better glucose kinetics (p=0.047) when compared to the control. Improvements in the diversity and composition of the gut microbiota were identified in the RT group. The relative abundance of Pseudomonas, Serratia, and Comamonas decreased significantly after 12 weeks of RT (p<0.001). These results suggest that RT has the potential to enhance the diversity of the gut microbiota and improve its biological functions.


2021 ◽  
Vol 11 (12) ◽  
pp. 1381
Author(s):  
Han-Na Kim ◽  
Jae-Heon Kim ◽  
Yoosoo Chang ◽  
Dongmin Yang ◽  
Hyung-Lae Kim ◽  
...  

Animal studies have shown the interaction between androgens and the gut microbiome directly and indirectly; however, limited evidence from human studies is available. To evaluate the association between prostate-specific antigen (PSA) levels within the normal range, reflective of androgen receptor activity, and the gut microbiota composition, a cross-sectional analysis was performed in 759 Korean men aged between 25 and 78 years with normal PSA levels of ≤4.0 ng/mL. We evaluated the biodiversity of gut microbiota as well as the taxonomic and functional signatures associated with PSA levels using 16S rRNA gene sequencing data. PSA levels within the normal range were categorized into three groups: lowest quartile (G1), interquartile range (G2, reference), and highest quartile (G3). The G3 group had higher microbial richness than the G2 group, although it was dominated by a few bacteria. An increase in Escherichia/Shigella abundance and a reduction in Megamonas abundance in the G3 group were also detected. A U-shaped relationship was observed between the three groups across most analyses, including biodiversity, taxonomic composition, and inferred pathways in the gut microbiota. This study showed different microbiota patterns across PSA levels within the normal range. Further studies are required to elucidate the role of microbiota in regulating PSA levels.


Author(s):  
F. Borgo ◽  
A. D. Macandog ◽  
S. Diviccaro ◽  
E. Falvo ◽  
S. Giatti ◽  
...  

Abstract Purpose Post-finasteride syndrome (PFS) has been reported in a subset of patients treated with finasteride (an inhibitor of the enzyme 5alpha-reductase) for androgenetic alopecia. These patients showed, despite the suspension of the treatment, a variety of persistent symptoms, like sexual dysfunction and cognitive and psychological disorders, including depression. A growing body of literature highlights the relevance of the gut microbiota-brain axis in human health and disease. For instance, alterations in gut microbiota composition have been reported in patients with major depressive disorder. Therefore, we have here analyzed the gut microbiota composition in PFS patients in comparison with a healthy cohort. Methods Fecal microbiota of 23 PFS patients was analyzed by 16S rRNA gene sequencing and compared with that reported in ten healthy male subjects. Results Sexual dysfunction, psychological and cognitive complaints, muscular problems, and physical alterations symptoms were reported in more than half of the PFS patients at the moment of sample collection. The quality sequence check revealed a low library depth for two fecal samples. Therefore, the gut microbiota analyses were conducted on 21 patients. The α-diversity was significantly lower in PFS group, showing a reduction of richness and diversity of gut microbiota structure. Moreover, when visualizing β-diversity, a clustering effect was found in the gut microbiota of a subset of PFS subjects, which was also characterized by a reduction in Faecalibacterium spp. and Ruminococcaceae UCG-005, while Alloprevotella and Odoribacter spp were increased compared to healthy control. Conclusion Gut microbiota population is altered in PFS patients, suggesting that it might represent a diagnostic marker and a possible therapeutic target for this syndrome.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4772
Author(s):  
Natalia González-Zancada ◽  
Noemí Redondo-Useros ◽  
Ligia E. Díaz ◽  
Sonia Gómez-Martínez ◽  
Ascensión Marcos ◽  
...  

Fermented alcoholic drinks’ contribution to the gut microbiota composition is mostly unknown. However, intestinal microorganisms can use compounds present in beer. This work explored the associations between moderate consumption of beer, microbiota composition, and short chain fatty acid (SCFA) profile. Seventy eight subjects were selected from a 261 healthy adult cohort on the basis of their alcohol consumption pattern. Two groups were compared: (1) abstainers or occasional consumption (ABS) (n = 44; <1.5 alcohol g/day), and (2) beer consumption ≥70% of total alcohol (BEER) (n = 34; 200 to 600 mL 5% vol. beer/day; <15 mL 13% vol. wine/day; <15 mL 40% vol. spirits/day). Gut microbiota composition (16S rRNA gene sequencing) and SCFA concentration were analyzed in fecal samples. No differences were found in α and β diversity between groups. The relative abundance of gut bacteria showed that Clostridiaceae was lower (p = 0.009), while Blautia and Pseudobutyrivibrio were higher (p = 0.044 and p = 0.037, respectively) in BEER versus ABS. In addition, Alkaliphilus, in men, showed lower abundance in BEER than in ABS (p = 0.025). Butyric acid was higher in BEER than in ABS (p = 0.032), and correlated with Pseudobutyrivibrio abundance. In conclusion, the changes observed in a few taxa, and the higher butyric acid concentration in consumers versus non-consumers of beer, suggest a potentially beneficial effect of moderate beer consumption on intestinal health.


2021 ◽  
Vol 9 (3) ◽  
pp. 584
Author(s):  
Francesco Miragoli ◽  
Vania Patrone ◽  
Aldo Prandini ◽  
Samantha Sigolo ◽  
Matteo Dell’Anno ◽  
...  

Alternatives to antibiotic treatments are required owing to the ban on the use of these drugs as growth promoters in food animal production. Tributyrin appears to play a role in improving growth performance in pigs, albeit with varying degrees of effectiveness. So far, very little is known about its effects on gut microbiota composition. In this study, we investigated the gut microbiota changes of piglets receiving, at weaning, 0.2% tributyrin added to their basal diet. Microbiota composition was assessed through 16S-rRNA gene sequencing on stools collected from tributyrin and control groups. The functional profiles of microbial communities were predicted from amplicon abundance data. A comparison between dietary groups revealed that tributyrin strongly modulated gut microbiota composition in piglets, increasing the relative abundance of a number of bacterial genera such as Oscillospira, Oscillibacter, Mucispirillum and Butyrivibrio. These genera were positively correlated to animal average daily gain (ADG) and/or body weight (BW). Based on the function profile prediction, the gut microbiome of the tributyrin group possessed an enhanced potential for energy metabolism and a reduced potential for carbohydrate metabolism. In conclusion, our results indicated that tributyrin can promote changes to gut microbial communities, which could contribute to improving animal performance after weaning.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chunyan Su ◽  
Xingxing Li ◽  
Yuxin Yang ◽  
Yu Du ◽  
Xiumin Zhang ◽  
...  

AbstractTrimethylamine-N-oxide (TMAO), a gut-microbiota-dependent metabolite generated from its dietary precursors such as choline, has been identified as an independent risk factor for atherosclerosis. Metformin is the most widely used drug for the treatment of type 2 diabetes (T2D), which has therapeutic effects on hyperglycemia accelerated atherosclerosis. A growing body of evidence suggest that metformin plays a therapeutic role by regulating the structure and metabolic function of gut microbiota. However, whether metformin has an impact on gut-microbiota-mediated TMAO production from choline remains obscure. In this study, the oral administration of metformin significantly reduced choline diet-increased serum TMAO in choline diet-fed C57BL/6J mice. The diversity analysis based on 16S rRNA gene sequencing of C57BL/6J mice fecal samples indicated that metformin markedly changed the gut-microbiota composition. Metformin was positively correlated with the enrichment of different intestinal bacteria such as Bifidobacterium and Akkermansia and a lower cutC (a choline utilization gene) abundance. Furthermore, the ex vivo and in vitro inhibitory effects of metformin on choline metabolism of TMA-producing bacteria were confirmed under anaerobic condition. The results suggested that metformin suppresses serum TMAO level by remodeling gut microbiota involved in TMA generation from choline.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 378-378
Author(s):  
Mei Wang ◽  
Marcia Monaco ◽  
Victoria C Daniels ◽  
Johanna Hirvonen ◽  
Henrik Max Jensen ◽  
...  

Abstract Objectives Human milk is a source of oligosaccharides that promote the growth of beneficial bacteria. Bifidobacterium longum subsp. infantis, a dominant species in breastfed infants, has the capacity to utilize milk oligosaccharides. Herein, the effects of 2'fucosyllactose (2'FL), B. infantis Bi-26 (Bi-26), and a combination thereof on piglet gut microbiota composition and volatile fatty acid (VFA) concentrations were assessed. Methods Fifty-two intact male pigs were provided ad libitum access to a nutritionally-adequate milk replacer without (CON) or with 1.0 g/L 2’FL (FL) from postnatal day 2 to 34/35. Pigs were further stratified to receive either 12% glycerol or Bi-26 in glycerol orally, 109 colony-forming unit/day (BI and FLBI). Ascending colon (AC) and rectal contents were collected. Gut microbiota profiles were assessed by 16S rRNA gene sequencing and real-time PCR and VFA were determined by gas chromatography. Results Neither 2'FL nor Bi-26 affected the overall microbiota composition (P &gt; 0. 05); however, alpha diversity and the relative abundances of bacterial genera were influenced by the treatments. Shannon indices were lower in AC of piglets fed Bi-26 (P = 0.048). Proportions of Clostridia UCG-014, Lachnoclostridium, Christensenellaceae R-7 group and Anaerovoracaceae family XIII AD3011 group were lower, while Faecalibacterium was higher in AC of piglets receiving 2'FL (P &lt; 0.05). Bi-26 decreased (P &lt; 0.05) colonic abundances of Parabacteroides, Fusobacterium, Butyricimonas and uncultured Prevotellaceae. In rectal contents,7 bacterial genera were impacted by 2'FL and 3 by Bi-26 (P &lt; 0.05). Interactive effects were observed for several bacterial genera and acetate concentrations (P &lt; 0.05). In AC, Lachnospiraceae CAG-56 was higher in CON than all other groups and Allisonella was lower in BI piglets vs. CON. Rectal contents Bacteroides was higher in BI piglets than CON. Compared to CON, acetate concentrations were higher in AC of FL piglets (P &lt; 0.05). Conclusions 2'FL and Bi-26 supplemented to milk replacer exerted individual and synbiotic influences on gut bacterial composition, and 2'FL alone increased specific VFA concentration, demonstrating its prebiotic potential. Funding Sources DuPont Nutrition and Biosciences.


Sign in / Sign up

Export Citation Format

Share Document