scholarly journals Coupled Plasma-Catalytic System with Rang 19pr Catalyst for Conversion of Tar

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Michał Młotek ◽  
Joanna Woroszył ◽  
Bogdan Ulejczyk ◽  
Krzysztof Krawczyk

Abstract A coupled plasma-catalytic system (CPCS) for the conversion of toluene was investigated and compared to the homogeneous system of gliding discharge plasma. Toluene was used as a model compound, which is present in tars. The study was carried out at atmospheric pressure, in a gas composition similar to the one obtained during pyrolysis of biomass. The effect of the initial toluene concentration, energy supplied to gliding discharge (GD) and the presence of a catalyst on the conversion of toluene was studied. Both the composition of outlet gas and its calorific value were monitored. Based on the obtained results it can be concluded that the conversion of toluene increases with the increase of gliding discharge power. The highest toluene conversion (89%) was received in the coupled plasma-catalytic system (catalyst: RANG-19PR) under the following conditions: CO (0.13 mol. fr.), CO2 (0.12 mol. fr.), H2 (0.25 mol. fr.), N2 (0.50 mol. fr.) and 4400 ppm of toluene with a gas flow rate of 1000 Nl/h. The composition of the outlet gas in the homogeneous system and in the CPCS changed in the range of a few percents. Toluene levels were reduced tenfold. Benzene, C3 and C4 hydrocarbons, as well as acetylene, ethylene and ethane, were detected in the outlet stream in trace amounts. Carbon deposits were present in the reactor. The products of methanation of carbon oxides were detected in the both studied systems. A mechanism of toluene decomposition in the CPCS was proposed. The application of the catalyst brought about an increase in the calorific value of the outlet gas. It was above the minimal level demanded by engines and turbines.

2017 ◽  
Vol 19 (4) ◽  
pp. 94-98 ◽  
Author(s):  
Michał Młotek ◽  
Bogdan Ulejczyk ◽  
Joanna Woroszył ◽  
Irmina Walerczak ◽  
Krzysztof Krawczyk

Abstract Gliding discharge and coupled plasma-catalytic system were used for toluene conversion in a gas composition such as the one obtained during pyrolysis of biomass. The chosen catalyst was G-0117, which is an industrial catalyst for methane conversion manufactured by INS Pulawy (Poland). The effects of discharge power, initial concentration of toluene, gas flow rate and the presence of the bed of the G-0117 catalyst on the conversion of C7H8, a model tars compounds were investigated. Conversion of coluene increases with discharge power and the highest one was noted in the coupled plasma-catalytic system. It was higher than that in the homogeneous system of gliding discharge. When applying a reactor with reduced G-0117 and CO (0.15 mol%), CO2 (0.15 mol%), H2 (0.30 mol%), N2 (0.40 mol%), 4000 ppm of toluene and gas flow rate of 1.5 Nm3/h, the conversion of toluene was higher than 99%. In the coupled plasma-catalytic system with G-0117 methanation of carbon oxides was observed.


2020 ◽  
Vol 44 (9-10) ◽  
pp. 557-565
Author(s):  
Zhenzhen Geng ◽  
Hong-yu Zhang ◽  
Guohui Yin ◽  
Yuecheng Zhang ◽  
Jiquan Zhao

The ionic liquid 1-methyl-3-(3-sulfopropyl)imidazolium chloride ([MIMPs]+Cl-) in combination with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and sodium nitrite (NaNO2) as a catalytic system demonstrates high efficiency in the one-pot two-step aerobic oxidative condensation of benzyl alcohols with 1,2-phenylenediamines to give benzimidazoles. Various benzimidazoles are obtained in good to excellent yields by this strategy.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5278
Author(s):  
Mianmo Meng ◽  
Yinghao Shen ◽  
Hongkui Ge ◽  
Xiaosong Xu ◽  
Yang Wu

Hydraulic fracturing becomes an essential method to develop tight gas. Under high injection pressure, fracturing fluid entering into the formation will reduce the flow channel. To investigate the influence of water saturation on gas flow behavior, this study conducted the gas relative permeability with water saturation and the flow rate with the pressure gradient at different water saturations. As the two dominant tight gas-bearing intervals, the Upper Paleozoic Taiyuan and Shihezi Formations deposited in Ordos Basin were selected because they are the target layers for holding vast tight gas. Median pore radius in the Taiyuan Formation is higher than the one in the Shihezi Formation, while the most probable seepage pore radius in the Taiyuan Formation is lower than the one in the Shihezi Formation. The average irreducible water saturation is 54.4% in the Taiyuan Formation and 61.6% in the Shihezi Formation, which indicates that the Taiyuan Formation has more movable water. The average critical gas saturation is 80.4% and 69.9% in these two formations, respectively, which indicates that the Shihezi Formation has more movable gas. Both critical gas saturation and irreducible water saturation have a negative relationship with porosity as well as permeability. At the same water saturation, the threshold gradient pressure of the Taiyuan Formation is higher than the one in the Shihezi Formation, which means that water saturation has a great influence on the Taiyuan Formation. Overall, compared with the Shihezi Formation, the Taiyuan Formation has a higher median pore size and movable water saturation, but water saturation has more influence on its gas flow capacity. Our research is conducive to understanding the effect of fracturing fluid filtration on the production of natural gas from tight reservoirs.


2008 ◽  
Vol 368-372 ◽  
pp. 1152-1154
Author(s):  
Hua Zhi Gu ◽  
Hou Zhi Wang ◽  
Mei Jie Zhang ◽  
Ao Huang ◽  
Wen Jie Zhang

The temperature distribution of the permeable brick was modeled using CFX software. The influence of magnesia and corundum on thermal shock resistance of non-cement bonded alumina-based permeable brick was investigated. The results indicated that, in the gas blow process, the high temperature regions near the working face of the brick gradually expanded with the increase of the gas flow rate. Therefore the inner part of the brick had the complex and large change of thermal stress. Further experiments demonstrated that thermal shock resistance of alumina-magnesia based castable refractory was better than that of alumina-chrome based castable refractory. With the increase of magnesia amount, the alumina-magnesia based castable refractory had more cycles of heating and water-cooling. When different kinds of corundum were added in the raw materials, the sample with tabular corundum showed the best thermal shock resistance, the one with white fused corundum performed worse and the one with fused dense corundum performed worst.


2019 ◽  
Vol 65 (No. 8) ◽  
pp. 377-386 ◽  
Author(s):  
Bogdan Kulig ◽  
Edward Gacek ◽  
Roman Wojciechowski ◽  
Andrzej Oleksy ◽  
Marek Kołodziejczyk ◽  
...  

The study aimed at comparing the yield of dry biomass and energy efficiency of 22 willow cultivars depending on the harvesting frequency and variable plant density. The field experiment was established in 2010. The willow cultivars were planted in two densities; 13 300 and 32 500 plants per ha. Among the compared cultivars in the second year (2013) of full production, high yield of dry matter was obtained from cvs. Tordis (33.1 t/ha/year), Inger (30.4 t/ha/year) and Klara (29.0 t/ha/year). After six years of cultivation, the highest aboveground dry matter was given by cvs. Tora (27.4 t/ha/year) and Tordis (27.0 t/ha/year). The gross calorific value of willow biomass ranged from 15.2–20.1 GJ/t dry weight. Greater energy efficiency (329.3 GJ/ha/year) occurred in willow cultivars collected in a two-year cycle than in the one-year cycle (286.4 GJ/ha/year). In the two-year cycle collected in the third year after planting, energy efficiency was greater (379.5 GJ/ha/year) than in the two-year cycle harvested in the sixth year after planting (279.15 GJ/ha/year). The initial slower growth of biomass does not determine plant yielding.


2013 ◽  
Vol 9 ◽  
pp. 467-475 ◽  
Author(s):  
Silvia M Soria-Castro ◽  
Alicia B Peñéñory

S-aryl thioacetates can be prepared by reaction of inexpensive potassium thioacetate with both electron-rich and electron-poor aryl iodides under a base-free copper/ligand catalytic system. CuI as copper source affords S-aryl thioacetates in good to excellent yields, by using 1,10-phenanthroline as a ligand in toluene at 100 °C after 24 h. Under microwave irradiation the time was drastically reduced to 2 h. Both procedures are simple and involve a low-cost catalytic system. This methodology was also applied to the “one-pot” synthesis of target heterocycles, such as 3H-benzo[c][1,2]dithiol-3-one and 2-methylbenzothiazole, alkyl aryl sulfides, diaryl disulfides and asymmetric diaryl sulfides in good yields.


1983 ◽  
Vol 137 ◽  
pp. 285-305 ◽  
Author(s):  
J. J. Gottlieb ◽  
O. Igra

The interaction of a rarefaction wave with a gradual monotonic area reduction of finite length in a duct, which produces transmitted and reflected rarefaction waves and other possible rarefaction and shock waves, was studied both analytically and numerically. A quasi-steady flow analysis which is analytical for an inviscid flow of a perfect gas was used first to determine the domains of and boundaries between four different wave patterns that occur at late times, after all local transient disturbances from the interaction process have subsided. These boundaries and the final constant strengths of the transmitted, reflected and other waves are shown as a function of both the incident rarefaction-wave strength and area-reduction ratio, for the case of diatomic gases and air with a specific-heat ratio of 7/5. The random-choice method was then used to solve numerically the conservation equations governing the one-dimensional non-stationary gas flow for many different combinations of rarefaction-wave strengths and area-reduction ratios. These numerical results show clearly how the transmitted, reflected and other waves develop and evolve with time, until they eventually attain constant strengths, in agreement with quasi-steady flow predictions for the asymptotic wave patterns. Note that in all of this work the gas in the area reduction is initially at rest.


RSC Advances ◽  
2015 ◽  
Vol 5 (58) ◽  
pp. 46545-46551 ◽  
Author(s):  
Behrooz Maleki ◽  
Mehdi Baghayeri ◽  
Seyed Mohammad Vahdat ◽  
Abbas Mohammadzadeh ◽  
Somaieh Akhoondi

A Ag@TiO2 nanocomposite/water as a novel catalytic system is used for the synthesis of benzoxazole derivatives. A shorter reaction time along with high product yield, catalyst stability and recyclability are the merits of this novel protocol.


Sign in / Sign up

Export Citation Format

Share Document