scholarly journals TET2 catalyzes active DNA demethylation of the Sry promoter and enhances its expression

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Naoki Okashita ◽  
Shunsuke Kuroki ◽  
Ryo Maeda ◽  
Makoto Tachibana

Abstract SRY is the master regulator of male sex determination in eutherian mammals. In mice, Sry expression is transcriptionally and epigenetically controlled in a developmental stage-specific manner. The Sry promoter undergoes demethylation in embryonic gonadal somatic cells at the sex-determining period. However, its molecular mechanism and in vivo significance remain unclear. Here, we report that the Sry promoter is actively demethylated during gonadal development, and TET2 plays a fundamental role in Sry demethylation. Tet2-deficient mice showed absence of 5-hydroxymethylcytosine in the Sry promoter. Furthermore, Tet2 deficiency diminished Sry expression, indicating that TET2-mediated DNA demethylation regulates Sry expression positively. We previously showed that the deficiency of the H3K9 demethylase Jmjd1a compromises Sry expression and induces male-to-female sex reversal. Tet2 deficiency enhanced the sex reversal phenotype of Jmjd1a-deficient mice. Thus, TET2-mediated active DNA demethylation and JMJD1A-mediated H3K9 demethylation contribute synergistically to sex determination.

2011 ◽  
Vol 366 (1575) ◽  
pp. 2266-2273 ◽  
Author(s):  
Petra Hajkova

Epigenetic reprogramming in the germline provides a developmental model to study the erasure of epigenetic memory as it occurs naturally in vivo in the course of normal embryonic development. Our data show that germline reprogramming comprises both active DNA demethylation and extensive chromatin remodelling that are mechanistically linked through the activation of the base excision DNA repair pathway involved in the DNA demethylation process. The observed molecular hallmarks of the germline reprogramming exhibit intriguing similarities to other dedifferentiation or regeneration systems, pointing towards the existence of unifying molecular pathways underlying cell fate reversal. Elucidation of molecular processes involved in the resetting of epigenetic information in vivo will thus add to our ability to manipulate cell fate and to restore pluripotency in in vitro settings.


2016 ◽  
Vol 228 (3) ◽  
pp. 205-218 ◽  
Author(s):  
Lili Chen ◽  
Xiaolong Jiang ◽  
Haiwei Feng ◽  
Hongjuan Shi ◽  
Lina Sun ◽  
...  

Estrogen, which is synthesized earlier in females than androgen in males, is critical for sex determination in non-mammalian vertebrates. However, it remains unknown that what would happen to the gonadal phenotype if estrogen and androgen were administrated simultaneously. In this study, XY and XX tilapia fry were treated with the same dose of 17α-methyltestosterone (MT) and 17β-estradiol (E2) alone and in combination from 0 to 30 days after hatching. Treatment of XY fish with E2 resulted in male to female sex reversal, while treatment of XX fish with MT resulted in female to male sex reversal. In contrast, simultaneous treatment of XX and XY fish with MT and E2 resulted in female, but with cyp11b2 and cyp19a1a co-expressed in the ovary. Serum 11-ketotestosteron level of the MT and E2 simultaneously treated XX and XY female was similar to that of the XY control, while serum E2 level of these two groups was similar to that of the XX control. Transcriptomic cluster analysis revealed that the MT and E2 treated XX and XY gonads clustered into the same branch with the XX control. However a small fraction of genes, which showed disordered expression, may be associated with stress response. These results demonstrated that estrogen could maintain the female phenotype of XX fish and feminize XY fish even in the presence of androgen. Simultaneous treatment with estrogen and androgen up-regulated the endogenous estrogen and androgen synthesis, and resulted in disordered gene expression and endocrine disruption in tilapia.


Science ◽  
2013 ◽  
Vol 341 (6150) ◽  
pp. 1106-1109 ◽  
Author(s):  
Shunsuke Kuroki ◽  
Shogo Matoba ◽  
Mika Akiyoshi ◽  
Yasuko Matsumura ◽  
Hitoshi Miyachi ◽  
...  

Developmental gene expression is defined through cross-talk between the function of transcription factors and epigenetic status, including histone modification. Although several transcription factors play crucial roles in mammalian sex determination, how epigenetic regulation contributes to this process remains unknown. We observed male-to-female sex reversal in mice lacking the H3K9 demethylase Jmjd1a and found that Jmjd1a regulates expression of the mammalian Y chromosome sex-determining gene Sry. Jmjd1a directly and positively controls Sry expression by regulating H3K9me2 marks. These studies reveal a pivotal role of histone demethylation in mammalian sex determination.


2021 ◽  
Author(s):  
Dan Ye ◽  
Leilei Chen ◽  
Carmen Morcelle ◽  
Zhouli Cheng ◽  
Xiufei Chen ◽  
...  

Abstract The immune-response gene 1 (IRG1) plays a key role in anti-pathogen defense, as deletion of Irg1 in mice causes severe defects in response to bacterial and viral infection, and decreased survival1, 2. IRG1 transcription is rapidly induced by pathogen infection and inflammatory conditions primarily in cells of myeloid lineage3. IRG1 encodes a mitochondrial metabolic enzyme, aconitate decarboxylase 1 (ACOD1), that catalyzes the decarboxylation of cis-aconitate to produce the anti-inflammatory metabolite itaconic acid (ITA)4. Several molecular processes are affected by ITA, including succinate dehydrogenase (SDH) inhibition5, resulting in succinate accumulation and metabolic reprogramming6, 7, and alkylation of protein cysteine residues, inducing the electrophilic stress response mediated by NRF2 and IκBζ8, 9 and impairing aerobic glycolysis10. However, the mechanisms by which ITA exerts its profound anti-inflammatory effect still remains to be fully elucidated. Here, we show that ITA is a potent inhibitor of the TET family DNA dioxygenases, which catalyze the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) during the process of active DNA demethylation. ITA binds to the same site of α-ketoglutarate (α-KG) in TET2, inhibiting its catalytic activity. Lipopolysaccharides (LPS) treatment, which induces Irg1 expression and ITA accumulation, inhibits Tet activity in macrophages. Transcriptome analysis reveals TET2 is a major target of ITA in suppressing LPS-induced genes, including those regulated by NF-κB and STAT signaling pathways. In vivo, ITA decreases 5hmC, reduces LPS-induced acute pulmonary edema and lung and liver injury, and protects mice against lethal endotoxaemia in a manner that is dependent on the catalytic activity of Tet2. Our study thus identifies ITA as an immune modulatory metabolite that selectively inhibits TET enzymes to dampen the inflammatory response.


2018 ◽  
Vol 99 (6) ◽  
pp. 1205-1215 ◽  
Author(s):  
Yulong Han ◽  
Cheng Peng ◽  
Le Wang ◽  
Jiani Guo ◽  
Mingwei Lu ◽  
...  

Genetics ◽  
2019 ◽  
Vol 213 (4) ◽  
pp. 1317-1327 ◽  
Author(s):  
Yingjie Zhou ◽  
Wei Sun ◽  
Han Cai ◽  
Haisheng Bao ◽  
Yu Zhang ◽  
...  

Anti-Müllerian hormone (Amh, or Müllerian-inhibiting substance, Mis), a member of TGF-β superfamily, has been well documented in some vertebrates as initiator or key regulator in sexual development, and particularly in fish. However, its functional role has not yet been identified in reptiles. Here, we characterized the Amh gene in the Chinese soft-shelled turtle Pelodiscus sinensis, a typical reptilian species exhibiting ZZ/ZW sex chromosomes. The messenger RNA of Amh was initially expressed in male embryonic gonads by stage 15, preceding gonadal sex differentiation, and exhibited a male-specific expression pattern throughout embryogenesis. Moreover, Amh was rapidly upregulated during female-to-male sex reversal induced by aromatase inhibitor letrozole. Most importantly, Amh loss of function by RNA interference led to complete feminization of genetic male (ZZ) gonads, suppression of the testicular marker Sox9, and upregulation of the ovarian regulator Cyp19a1. Conversely, overexpression of Amh in ZW embryos resulted in female-to-male sex reversal, characterized by the formation of a testis structure, ectopic activation of Sox9, and a remarkable decline in Cyp19a1. Collectively, these findings provide the first solid evidence that Amh is both necessary and sufficient to drive testicular development in a reptilian species, P. sinensis, highlighting the significance of the TGF-β pathway in reptilian sex determination.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yayoi Ikeda ◽  
Ayako Tagami ◽  
Mamiko Maekawa ◽  
Akiko Nagai

AbstractSteroidogenic factor 1 (NR5A1) is essential for gonadal development. To study the importance of NR5A1 during early gonadal sex differentiation, we generated Sox9-Cre-Nr5a1 conditional knockout (cKO) mice: Sox9-Cre;Nr5a1flox/flox and Sox9-Cre;Nr5a1flox/− mice. Double-immunostaining for NR5A1 and AMH revealed silenced NR5A1 in Sertoli cells and reduced AMH+ cells in the gonads of XY Sox9-Cre-Nr5a1 cKO mice between embryonic days 12.5 (E12.5) and E14.5. Double-immunostaining for SOX9 and FOXL2 further indicated an early block in Sertoli cells and ectopic granulosa cell differentiation. The number of cells expressing the Leydig cell marker 3βHSD obviously reduced in the gonads of XY Sox9-Cre;Nr5a1flox/− but not Sox9-Cre;Nr5a1flox/flox mice at E15.5. The presence of STRA8+ cells indicated that germ cells entered meiosis in the gonads of XY Sox9-Cre-Nr5a1 cKO mice. The results of qRT-PCR revealed remarkably reduced and elevated levels of testis and ovary markers, respectively, in the gonads of XY Sox9-Cre-Nr5a1 cKO mice at E12.5‒E13.5. These data suggested that the loss of Nr5a1 abrogates the testicular pathway and induces the ectopic ovarian pathway, resulting in postnatal partial/complete male-to-female gonadal sex reversal. Our findings provide evidence for the critical role of NR5A1 in murine gonadal sex determination in vivo.


2019 ◽  
Author(s):  
Lia Kallenberger ◽  
Rachel Erb ◽  
Lucie Kralickova ◽  
Andrea Patrignani ◽  
Esther Stöckli ◽  
...  

ABSTRACTThe enhancer/promoter of the vitellogenin II (VTG) gene has been extensively studied as a model system of vertebrate transcriptional control. While deletion mutagenesis and in vivo footprinting identified the transcription factor (TF) binding sites governing its tissue specificity, DNase hypersensitivity- and DNA methylation studies revealed the epigenetic changes accompanying its hormone-dependent activation. Moreover, upon induction with estrogen (E2), the region flanking the estrogen-responsive element (ERE) was reported to undergo active DNA demethylation. We now show that although the VTG ERE is methylated in embryonic chicken liver and in LMH/2A hepatocytes, its induction by E2 was not accompanied by extensive demethylation. In contrast, E2 failed to activate a VTG enhancer/promoter-controlled luciferase reporter gene methylated by SssI. Surprisingly, this inducibility difference could be traced not to the ERE, but rather to a single CpG in an E-box (CACGTG) sequence upstream of the VTG TATA box, which is unmethylated in vivo, but methylated by SssI. We demonstrate that this E-box binds the upstream stimulating factor USF1/2. Selective methylation of the CpG within this binding site with an E-box-specific DNA methyltranferase Eco72IM was sufficient to attenuate USF1/2 binding in vitro and abolish the hormone-induced transcription of the VTG gene in the reporter system.


2021 ◽  
Author(s):  
Ella Thomson ◽  
Liang Zhao ◽  
Yen-Shan Chen ◽  
Enya Longmuss ◽  
Ee Ting Ng ◽  
...  

AbstractSRY is the Y-chromosomal gene that determines male sex development in humans and most other mammals. After three decades of study, we still lack a detailed understanding of which domains of the SRY protein are required to engage pathway of gene activity leading to testis development. Some insight has been gained from the study of genetic variations underlying differences/disorders of sex determination (DSD), but the lack of a system of experimentally generating SRY mutations and studying their consequences in vivo has limited progress in the field. To address this issue, we generated a mouse model carrying a human SRY transgene able to drive male sex determination in XX mice. Using CRISPR-Cas9 gene editing, we generated novel genetic modifications in each of SRY’s three domains (N-terminal, HMG box, and C-terminal) and performed detailed analysis of their molecular and cellular effects on embryonic testis development. Our results provide new functional insights unique to human SRY and the causes of DSD, and present a versatile and powerful system in which to demonstrate causality of SRY variations in DSD, to functionally study the SRY variation database, and to characterize new pathogenic SRY variations found in DSD.


Sign in / Sign up

Export Citation Format

Share Document