scholarly journals A new class of nonreciprocal spin waves on the edges of 2D antiferromagnetic honeycomb nanoribbons

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
D. Ghader ◽  
A. Khater

Abstract Antiferromagnetic two-dimensional (2D) materials are currently under intensive theoretical and experimental investigations in view of their potential applications in antiferromagnet-based magnonic and spintronic devices. Recent experimental studies revealed the importance of magnetic anisotropy and of Dzyaloshinskii-Moriya interactions (DMI) on the ordered ground state and the magnetic excitations in these materials. In this work we present a robust classical field theory approach to study the effects of anisotropy and the DMI on the edge and bulk spin waves in 2D antiferromagnetic nanoribbons. We predict the existence of a new class of nonreciprocal edge spin waves, characterized by opposite polarizations in counter-propagation. These novel edge spin waves are induced by the DMI and are fundamentally different from conventional nonreciprocal spin waves for which the polarization is independent of the propagation direction. We further analyze the effects of the edge structures on the magnetic excitations for these systems. In particular, we show that anisotropic bearded edge nanoribbons act as topologically trivial magnetic insulators with potentially interesting applications in magnonics. Our results constitute an important finding for current efforts seeking to establish unconventional magnonic devices utilizing spin wave polarization.

2004 ◽  
Vol 126 (3) ◽  
pp. 271-278 ◽  
Author(s):  
Min-Feng Yu

Representing a new class of nanoscale material, carbon nanotubes possess many extraordinary mechanical and electronic properties stemming essentially from their unique geometric and chemical structures. Through more than two decades of extensive theoretical and experimental investigations, our understanding on the mechanical properties of carbon nanotubes has greatly improved. The intrinsic mechanical properties of carbon nanotubes, such as their stiffness, strength and deformability, have been relatively well studied and understood; and other mechanics-related properties of carbon nanotubes, such as the defect formation, the fracture mechanism, the interface mechanics and the electromechanics, have also being broadly examined and a comprehensive knowledge of them begins to emerge. I review the current status of research on the mechanical study of carbon nanotubes, especially on the experimental study of their fundamental mechanical properties, such as Young’s modulus, tensile and shear strength, compressibility and deformability. Selected experimental methods and techniques used for the studies will also be introduced. I conclude the review by discussing the new challenges still facing the mechanical study of carbon nanotubes.


Author(s):  
Parviz Enany ◽  
Oleksandr Shevchenko ◽  
Carsten Drebenstedt

AbstractThis paper presents experimental studies on the optimization of air–water flow in an airlift pump. Airlift pumps use compressed gas to verticall transport liquids and slurries. Due to the lack of theoretical equations for designing and predicting flow regimes, experimental investigations must be carried out to find the best condition to operate an airlift pump at high efficiency. We used a new air injection system and different submergence ratios to evaluate the output of a simple pump for vertical displacement of water in an underground mine. The tests were carried out in a new device with 5.64 m height and 10.2 cm circular riser pipe. Three air-jacket pipes, at different gas flows in the range of 0.002–0.09 m3/s were investigated with eight submergence ratios. It was found that with the same air flow rate, the most efficient flow of water was achieved when an air jacket with 3 mm diameter holes was used with a submergence ratio between 0.6 and 0.75. In addition, a comparison of practical results with two theoretical models proposed by other investigators showed that neither was able to accurately predict airlift performance in air–water flow mode.


2016 ◽  
Vol 06 (02) ◽  
pp. 1630003 ◽  
Author(s):  
Zhen Fan ◽  
Jingsheng Chen ◽  
John Wang

Ferroelectric random access memory (FeRAM) based on conventional ferroelectric perovskites, such as Pb(Zr,Ti)O3 and SrBi2Ta2O9, has encountered bottlenecks on memory density and cost, because those conventional perovskites suffer from various issues mainly including poor complementary metal-oxide-semiconductor (CMOS)-compatibility and limited scalability. Next-generation cost-efficient, high-density FeRAM shall therefore rely on a material revolution. Since the discovery of ferroelectricity in Si:HfO2 thin films in 2011, HfO2-based materials have aroused widespread interest in the field of FeRAM, because they are CMOS-compatible and can exhibit robust ferroelectricity even when the film thickness is scaled down to below 10 nm. A review on this new class of ferroelectric materials is therefore of great interest. In this paper, the most appealing topics about ferroelectric HfO2-based materials including origins of ferroelectricity, advantageous material properties, and current and potential applications in FeRAM, are briefly reviewed.


1996 ◽  
Vol 431 ◽  
Author(s):  
Lori A. Vermeulen ◽  
J. Pattanayak ◽  
Travis Fisher ◽  
Monica Hansford ◽  
Scott J. Burgmeyer

AbstractSolid state metal phosphonates (M(O3P-R-PO3) or M(O3P-R)2 (M = metal)) have layered structures where the metal atoms lie in planar sheets and the intervening R groups take up the interlamellar space. Microporous metal phosphonates can be prepared by reaction of the metal with a mixture of large and small phosphonates (M(O3P-LARGE)x(O3P-SMALL)2-x. The larger group acts as a pillar that holds the layers apart. Void spaces result from the presence of the smaller groups. The porous nature of these solids make them potential candidates for applications as sensors, size- and shape- selective catalysts, and chromatographic materials. Metal diphosphonates (M(O3P-R-PO3) can also be prepared one layer at a time on a surface, resulting in the construction of interesting superstructures that are not accessible through the solid state synthesis. For example, these superstructures can contain different components in sequential layers and may have applications in energy conversion, vectorial electron transport, and NLO devices. The preparation of microporous thin films would combine the desirable potential applications of the porous solids with the interesting parallel superstructures that can be prepared from the thin film assemblies. We report our progress toward the construction of microporous metal phosphonate thin films. The two methods that are currently being developed include: 1) phosphonate exchange of pre-assembled films, and 2) co-deposition of different large and small phosphonates during film assembly.


2017 ◽  
Vol 21 (3) ◽  
pp. 1119-1132 ◽  
Author(s):  
Gui-Lan Yu ◽  
Hong-Wei Miao

The vibration isolation performance of a PC sandwich plate with periodic hollow tube core is investigated experimentally and numerically. The experiment results reveal that there exist vibration attenuation zones in acceleration frequency responses which can be improved by increasing the number of periods or tuning some structure parameters. The presence of soft fillers shifts the attenuation zone to lower frequencies and enhances the capability of vibration isolation to some extent. Dispersion relations and acceleration frequency responses are calculated by finite element method using COMSOL MULTIPHYSICS. The attenuation zones obtained by experiments fit well with that by simulations, and both are consistent with the band gap in dispersion relations. The numerical and experimental studies in the present paper show that this PC sandwich plate exhibits a good performance on vibration isolation in low frequency ranges, which will provide some useful references for relevant research and potential applications in vibration propagation manipulations.


2016 ◽  
Vol 72 (5) ◽  
pp. 373-378 ◽  
Author(s):  
Feng-Lan Liang ◽  
De-Yun Ma ◽  
Liang Qin

Metal–organic frameworks (MOFs) are a new class of porous materials that have received widespread attention due to their potential applications in gas storage and/or separation, catalysis, luminescence, and so on. The title compound, poly[[(μ2-3,3′-dimethyl-4,4′-bipyridine-κ2N:N′)bis(μ4-4,4′-oxydibenzoato-κ4O:O′:O′′:O′′′)dizinc] tetrahydrate], {[Zn2(C14H8O5)2(C12H12N2)]·4H2O}n, has been prepared by the solvothermal assembly of Zn(NO3)2·6H2O, 4,4′-oxydi(benzoic acid) and 3,3′-dimethyl-4,4′-bipyridine. The two ZnIIatoms adopt the same five-coordinated distorted square-pyramidal geometry (i.e.ZnO4N), bonding to four O atoms from four different 4,4′-oxydibenzoate (oba) ligands and one N atom from a 3,3′-dimethyl-4,4′-bipyridine (dmbpy) ligand. The supramolecular secondary building unit (SBU) is a paddle-wheel [Zn2(COO)4] unit and these units are linked by oba ligands within the layer to form a two-dimensional net parallel to thebaxis, with the dmbpy ligands pointing alternately up and down, which is further extended by dmbpy ligands to form a three-dimensional framework withrobtopology. The single net leaves voids that are filled by mutual interpenetration of an independent equivalent framework in a twofold interpenetrating architecture. The title compound shows thermal stability up to 673 K and is stable in aqueous solutions in the pH range 5–9. Excitation and luminescence data observed at room temperature show that it emits a bright-blue fluorescence.


Author(s):  
І. О. Іванов ◽  
Н. П. Супрун ◽  
Ю. О. Ващенко

Investigation of the influence of the peculiarities of raw material composition and structure of traditional and innovative linen textile materials on their hygienic properties. Theoretical and experimental investigations are based on the main positions of textile materials science. In experimental studies, modern standardized methods for determining the hygienic properties of textile materials were used, as well as techniques specially developed taking into account the peculiarities of the operating conditions of underwear. The peculiarities of the operating conditions and the basic functions of hospital underwear were determined. The comparative analysis of hygienic properties of traditional and modern fabrics for underwear was carried out. Using the standardized and the developed methods, adapted to the peculiarities of the conditions of use of the products, the indicators characterizing the processes of water absorption of the materials were experimentally determined. On the basis of the obtained values of quality indicators, a comprehensive assessment of the ability of materials to transfer moisture and air, with the calculation of the arithmetic complex quality index was done. This allowed to determine the material that is optimal in properties, which provides thermophysiological comfort when operating hospital underwear. Using the developed methods, which take into account the specifics of the operating conditions, a comparative analysis of the hygienic properties of traditional and innovative materials for underwear was carried out. A new range of textile materials for underwear has been proposed, taking into account the peculiarities of the operational situation of consumption.


2020 ◽  
Vol 53 (5) ◽  
pp. 695-703
Author(s):  
Maheswari Chennippan ◽  
Priyanka E. Bhaskaran ◽  
Thangavel Subramaniam ◽  
Balasubramaniam Meenakshipriya ◽  
Kasilingam Krishnamurthy ◽  
...  

This paper aims to explore experimental studies on the NOx removal process by using pilot plant packed column experimental hardware. Physical modeling based on chemical absorption equations is used to estimate the diameter concerning the height and L/G ratio. Hydrogen peroxide is used as the additive for achieving high NOx removal efficiency. The absorbent entering into the packed column has been controlled by varying its flow rate through the fractional order controller. The FOCDM-PIλDµ controller tuning parameters such as KP, τI, τD are determined using CDM (Coefficient Diagram Method) PID control strategy and the additional parameters of FOCDM-PIλDµ controller such as λ and µ are determined based on the PSO algorithm. The comparative analysis is performed with classical controllers like ZN-PID along with the CDM-PID controllers.


Sign in / Sign up

Export Citation Format

Share Document