scholarly journals The citrus flavonoid naringenin impairs the in vitro infection of human cells by Zika virus

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Allan Henrique Depieri Cataneo ◽  
Diogo Kuczera ◽  
Andrea Cristine Koishi ◽  
Camila Zanluca ◽  
Guilherme Ferreira Silveira ◽  
...  

Abstract The Zika virus (ZIKV) is an arthropod-borne virus that belongs to the Flaviviridae family. The ZIKV infection is usually asymptomatic or is associated with mild clinical manifestations; however, increased numbers of cases of microcephaly and birth defects have been recently reported. To date, neither a vaccine nor an antiviral treatment has become available to control ZIKV replication. Among the natural compounds recognized for their medical properties, flavonoids, which can be found in fruits and vegetables, have been found to possess biological activity against a variety of viruses. Here, we demonstrate that the citrus flavanone naringenin (NAR) prevented ZIKV infection in human A549 cells in a concentration-dependent and ZIKV-lineage independent manner. NAR antiviral activity was also observed when primary human monocyte-derived dendritic cells were infected by ZIKV. NAR displayed its antiviral activity when the cells were treated after infection, suggesting that NAR acts on the viral replication or assembly of viral particles. Moreover, a molecular docking analysis suggests a potential interaction between NAR and the protease domain of the NS2B-NS3 protein of ZIKV which could explain the anti-ZIKV activity of NAR. Finally, the results support the potential of NAR as a suitable candidate molecule for developing anti-ZIKV treatments.

2021 ◽  
Author(s):  
Catarina Sabino ◽  
Daniela Bender ◽  
Marie-Luise Herrlein ◽  
Eberhard Hildt

Zika virus (ZIKV) is a flavivirus well-known for the epidemic in the Americas in 2015-2016, where microcephaly in newborns and other neurological complications were connected to ZIKV infection. Many aspects of the viral life cycle, including binding and entry into the host cell, are still enigmatic. Based on the observation that CHO cells lack the expression of EGFR and are not permissive for various ZIKV strains, the relevance of EGFR for the viral life cycle was analyzed. Infection of A549 cells by ZIKV leads to a rapid internalization of EGFR that colocalizes with the endosomal marker EEA1. Moreover, the infection by different ZIKV strains is associated with an activation of EGFR and subsequent activation of the MAPK/ERK signaling cascade. However, treatment of the cells with MβCD, which on the one hand leads to an activation of EGFR but on the other hand prevents EGFR internalization, impairs ZIKV infection. Specific inhibition of EGFR or of the RAS-RAF-MEK-ERK signal transduction cascade hinders ZIKV infection by inhibition of ZIKV entry. In accordance to this, knockout of EGFR expression impedes ZIKV entry. In case of an already established infection, inhibition of EGFR or of downstream signaling does not affect viral replication. Taken together, these data demonstrate the relevance of EGFR in the early stages of ZIKV infection and identify EGFR as a target for antiviral strategies. Importance These data deepen the knowledge about the ZIKV infection process and demonstrate the relevance of EGFR for ZIKV entry. In light of the fact that a variety of specific and efficient inhibitors of EGFR and of EGFR-dependent signaling were developed and licensed, repurposing of these substances could be a helpful tool to prevent the spreading of ZIKV infection in an epidemic outbreak.


Vaccines ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 72 ◽  
Author(s):  
Gustavo Cabral-Miranda ◽  
Stephanie M. Lim ◽  
Mona O. Mohsen ◽  
Ilya V. Pobelov ◽  
Elisa S. Roesti ◽  
...  

Zika virus (ZIKV) is a flavivirus similar to Dengue virus (DENV) in terms of transmission and clinical manifestations, and usually both viruses are found to co-circulate. ZIKV is usually transmitted by mosquitoes bites, but may also be transmitted by blood transfusion, via the maternal–foetal route, and sexually. After 2015, when the most extensive outbreak of ZIKV had occurred in Brazil and subsequently spread throughout the rest of South America, it became evident that ZIKV infection during the first trimester of pregnancy was associated with microcephaly and other neurological complications in newborns. As a result, the development of a vaccine against ZIKV became an urgent goal. A major issue with DENV vaccines, and therefore likely also with ZIKV vaccines, is the induction of antibodies that fail to neutralize the virus properly and cause antibody-dependent enhancement (ADE) of the infection instead. It has previously been shown that antibodies against the third domain of the envelope protein (EDIII) induces optimally neutralizing antibodies with no evidence for ADE for other viral strains. Therefore, we generated a ZIKV vaccine based on the EDIII domain displayed on the immunologically optimized Cucumber mosaic virus (CuMVtt) derived virus-like particles (VLPs) formulated in dioleoyl phosphatidylserine (DOPS) as adjuvant. The vaccine induced high levels of specific IgG after a single injection. The antibodies were able to neutralise ZIKV without enhancing infection by DENV in vitro. Thus, the here described vaccine based on EDIII displayed on VLPs was able to stimulate production of antibodies specifically neutralizing ZIKV without potentially enhancing disease caused by DENV.


2016 ◽  
Vol 3 (4) ◽  
Author(s):  
Yong-Qiang Deng ◽  
Na-Na Zhang ◽  
Chun-Feng Li ◽  
Min Tian ◽  
Jia-Nan Hao ◽  
...  

Abstract The ongoing Zika virus (ZIKV) outbreaks have raised global concerns due to its unexpected clinical manifestations. Antiviral development is of high priority in response to the ZIKV emergency. In this study, we report that an adenosine analog NITD008 has potent in vitro and in vivo antiviral activity against ZIKV. The compound can effectively inhibit the historical and contemporary ZIKV strains in cultures as well as significantly reduce viremia and prevent mortality in A129 mice. Our results have demonstrated that NITD008 is potent inhibitor of ZIKV and can be used as reference inhibitor for future ZIKV antiviral drug screen and discovery.


2021 ◽  
Author(s):  
Juliana Bernardi Aggio ◽  
Bárbara Nery Porto ◽  
Claudia Nunes Duarte dos Santos ◽  
Ana Luiza Pamplona Mosimann ◽  
Pryscilla Fanini Wowk

Zika virus (ZIKV) emergence highlighted the need for a deeper understanding on virus-host interaction to pave the development of antiviral therapies. The present work aimed to address the response of neutrophils during ZIKV infection. Neutrophils are an important effector cell in innate immunity involved in the host response to neurotropic arboviruses. Our results indicate that human neutrophils were not permissive to Asian or African ZIKV strains replication. Indeed, after stimulation with ZIKV, neutrophils were not primed against the virus as evaluated by the absence of CD11b modulation, secretion of inflammatory cytokines and granule content, production of reactive oxygen species and neutrophil extracellular traps formation. Overall, neutrophils did not affect ZIKV infectivity. Moreover, ZIKV infection of primary innate immune cells in vitro did not trigger neutrophil migration. However, neutrophil co-cultured with ZIKV susceptible cells (A549) resulted in lower frequencies of infection on A549 cells by cell-to-cell contact. In vivo, neutrophil depletion from immunocompetent mice did not affect ZIKV spreading to the draining lymph nodes. The data suggest human neutrophils do not play a per se antiviral role against ZIKV, but these cells might participate in an infected environment shaping the ZIKV infection in other target cells.


2016 ◽  
Author(s):  
Rodrigo Delvecchio ◽  
Luiza M Higa ◽  
Paula Pezzuto ◽  
Ana Luiza Valadão ◽  
Patrícia P Garcez ◽  
...  

SummaryZika virus (ZIKV) infectionin uteromight lead to microcephaly and other congenital defects. In adults, cases of Guillain-Barré syndrome and meningoencephalitis associated with ZIKV infection have been reported, and no specific therapy is available so far. There is urgency for the discovery of antiviral agents capable of inhibiting viral replication and its deleterious effects. Chloroquine is widely administered as an antimalarial drug, anti-inflammatory agent, and it also shows antiviral activity against several viruses. Here we show that chloroquine exhibits antiviral activity against ZIKV in VERO, human brain microvascular endothelial, and neural stem cells. We demonstratedin vitrothat chloroquine reduces the number of ZIKV-infected cells, virus production and cell death promoted by ZIKV infection without cytotoxic effects. Our results suggest that chloroquine is a promising candidate for ZIKV clinical trials, since it is already approved for clinical use and can be safely administered to pregnant woman.


2019 ◽  
Vol 7 (9) ◽  
pp. 350 ◽  
Author(s):  
Cimini ◽  
Sacchi ◽  
De Minicis ◽  
Bordoni ◽  
Casetti ◽  
...  

An expansion of effector/activated Vδ2 T-cells was recently described in acute Zika virus (ZIKV)-infected patients, but their role in the protective immune response was not clarified. The aim of this study was to define the antiviral activity of Vδ2 T-cells against ZIKV-infected cells. The Vδ2 T-cells expansion and their cytotoxic activity against ZIKV-infected cells were tested in vitro and analyzed by RT-PCR and flow cytometry. We found that ZIKV infection was able to induce Vδ2 T-cells expansion and sensitized A549 cells to Vδ2-mediated killing. Indeed, expanded Vδ2 T-cells killed ZIKV-infected cells through degranulation and perforin release. Moreover, ZIKV infection was able to increase the expression on A549 cells of NKG2D ligands (NKG2DLs), namely MICA, MICB, and ULBP2, at both the mRNA and protein levels, suggesting the possible involvement of these molecules in the recognition by NKG2D-expressing Vδ2 T-cells. Indeed, the killing of ZIKV-infected cells by expanded Vδ2 T-cells was mediated by NKG2D/NKG2DL interaction as NKG2D neutralization abrogated Vδ2 cytotoxicity. Our data showed a strong antiviral activity of Vδ2 T-cells against ZIKV-infected cells, suggesting their involvement in the protective immune response. Other studies are necessary to investigate whether the lack of Vδ2 T-cells expansion in vivo may be associated with disease complications.


Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 91
Author(s):  
Verena Schultz ◽  
Stephanie L. Cumberworth ◽  
Quan Gu ◽  
Natasha Johnson ◽  
Claire L. Donald ◽  
...  

Understanding how Zika virus (Flaviviridae; ZIKV) affects neural cells is paramount in comprehending pathologies associated with infection. Whilst the effects of ZIKV in neural development are well documented, impact on the adult nervous system remains obscure. Here, we investigated the effects of ZIKV infection in established mature myelinated central nervous system (CNS) cultures. Infection incurred damage to myelinated fibers, with ZIKV-positive cells appearing when myelin damage was first detected as well as axonal pathology, suggesting the latter was a consequence of oligodendroglia infection. Transcriptome analysis revealed host factors that were upregulated during ZIKV infection. One such factor, CCL5, was validated in vitro as inhibiting myelination. Transferred UV-inactivated media from infected cultures did not damage myelin and axons, suggesting that viral replication is necessary to induce the observed effects. These data show that ZIKV infection affects CNS cells even after myelination—which is critical for saltatory conduction and neuronal function—has taken place. Understanding the targets of this virus across developmental stages including the mature CNS, and the subsequent effects of infection of cell types, is necessary to understand effective time frames for therapeutic intervention.


Author(s):  
Jainey James ◽  
Divya Jyothi ◽  
Sneh Priya

Aims: The present study aim was to analyse the molecular interactions of the phytoconstituents known for their antiviral activity with the SARS-CoV-2 nonstructural proteins such as main protease (6LU7), Nsp12 polymerase (6M71), and Nsp13 helicase (6JYT). The applied in silico methodologies was molecular docking and pharmacophore modeling using Schrodinger software. Methods: The phytoconstituents were taken from PubChem, and SARS-CoV-2 proteins were downloaded from the protein data bank. The molecular interactions, binding energy, ADMET properties and pharmacophoric features were analysed by glide XP, prime MM-GBSA, qikprop and phase application of Schrodinger respectively. The antiviral activity of the selected phytoconstituents was carried out by PASS predictor, online tools. Results: The docking score analysis showed that quercetin 3-rhamnoside (-8.77 kcal/mol) and quercetin 3-rhamnoside (-7.89 kcal/mol) as excellent products to bind with their respective targets such as 6LU7, 6M71 and 6JYT. The generated pharmacophore hypothesis model validated the docking results, confirming the hydrogen bonding interactions of the amino acids. The PASS online tool predicted constituent's antiviral potentials. Conclusion: The docked phytoconstituents showed excellent interactions with the SARS-CoV-2 proteins, and on the outset, quercetin 3-rhamnoside and quercetin 7-rhamnoside have well-interacted with all the three proteins, and these belong to the plant Houttuynia cordata. The pharmacophore hypothesis has revealed the characteristic features responsible for their interactions, and PASS prediction data has supported their antiviral activities. Thus, these natural compounds could be developed as lead molecules for antiviral treatment against SARS-CoV-2. Further in-vitro and in-vivo studies could be carried out to provide better drug therapy.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Yuyi Huang ◽  
Yujie Wang ◽  
Shuhui Meng ◽  
Zhuohang Chen ◽  
Haifan Kong ◽  
...  

Recent studies have indicated that the Zika virus (ZIKV) has a significant impact on the fetal brain, and autophagy is contributing to host immune response and defense against virus infection. Here, we demonstrate that ZIKV infection triggered increased LC3 punctuation in mouse monocyte-macrophage cell line (RAW264.7), mouse microglial cell line (BV2), and hindbrain tissues, proving the occurrence of autophagy both in vitro and in vivo. Interestingly, manual intervention of autophagy, like deficiency inhibited by 3-MA, can reduce viral clearance in RAW264.7 cells upon ZIKV infection. Besides, specific siRNA strategy confirmed that autophagy can be activated through Atg7-Atg5 and type I IFN signaling pathway upon ZIKV infection, while knocking down of Atg7 and Atg5 effectively decreased the ZIKV clearance in phagocytes. Furthermore, we analyzed that type I IFN signaling could contribute to autophagic clearance of invaded ZIKV in phagocytes. Taken together, our findings demonstrate that ZIKV-induced autophagy is favorable to activate host immunity, particularly through type I IFN signaling, which participates in host protection and defense against ZIKV infection.


2020 ◽  
Vol 64 (3) ◽  
Author(s):  
Antonios Fikatas ◽  
Peter Vervaeke ◽  
Belén Martínez-Gualda ◽  
Olaia Martí-Marí ◽  
Sam Noppen ◽  
...  

ABSTRACT Here, we report a class of tryptophan trimers and tetramers that inhibit (at low micromolar range) dengue and Zika virus infection in vitro. These compounds (AL family) have three or four peripheral tryptophan moieties directly linked to a central scaffold through their amino groups; thus, their carboxylic acid groups are free and exposed to the periphery. Structure-activity relationship (SAR) studies demonstrated that the presence of extra phenyl rings with substituents other than COOH at the N1 or C2 position of the indole side chain is a requisite for the antiviral activity against both viruses. The molecules showed potent antiviral activity, with low cytotoxicity, when evaluated on different cell lines. Moreover, they were active against laboratory and clinical strains of all four serotypes of dengue virus as well as a selected group of Zika virus strains. Additional mechanistic studies performed with the two most potent compounds (AL439 and AL440) demonstrated an interaction with the viral envelope glycoprotein (domain III) of dengue 2 virus, preventing virus attachment to the host cell membrane. Since no antiviral agent is approved at the moment against these two flaviviruses, further pharmacokinetic studies with these molecules are needed for their development as future therapeutic/prophylactic drugs.


Sign in / Sign up

Export Citation Format

Share Document