scholarly journals The Use of Whole Exome Sequencing in a Cohort of Transgender Individuals to Identify Rare Genetic Variants

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
J. Graham Theisen ◽  
Viji Sundaram ◽  
Mary S. Filchak ◽  
Lynn P. Chorich ◽  
Megan E. Sullivan ◽  
...  

AbstractApproximately 0.5–1.4% of natal males and 0.2–0.3% of natal females meet DSM-5 criteria for gender dysphoria, with many of these individuals self-describing as transgender men or women. Despite recent improvements both in social acceptance of transgender individuals as well as access to gender affirming therapy, progress in both areas has been hampered by poor understanding of the etiology of gender dysphoria. Prior studies have suggested a genetic contribution to gender dysphoria, but previously proposed candidate genes have not yet been verified in follow-up investigation. In this study, we expand on the topic of gender identity genomics by identifying rare variants in genes associated with sexually dimorphic brain development and exploring how they could contribute to gender dysphoria. To accomplish this, we performed whole exome sequencing on the genomic DNA of 13 transgender males and 17 transgender females. Whole exome sequencing revealed 120,582 genetic variants. After filtering, 441 variants in 421 genes remained for further consideration, including 21 nonsense, 28 frameshift, 13 splice-region, and 225 missense variants. Of these, 21 variants in 19 genes were found to have associations with previously described estrogen receptor activated pathways of sexually dimorphic brain development. These variants were confirmed by Sanger Sequencing. Our findings suggest a new avenue for investigation of genes involved in estrogen signaling pathways related to sexually dimorphic brain development and their relationship to gender dysphoria.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Anna Ka-Yee Kwong ◽  
Mandy Ho-Yin Tsang ◽  
Jasmine Lee-Fong Fung ◽  
Christopher Chun-Yu Mak ◽  
Kate Lok-San Chan ◽  
...  

Abstract Background Movement disorders are a group of heterogeneous neurological diseases including hyperkinetic disorders with unwanted excess movements and hypokinetic disorders with reduction in the degree of movements. The objective of our study is to investigate the genetic etiology of a cohort of paediatric patients with movement disorders by whole exome sequencing and to review the potential treatment implications after a genetic diagnosis. Results We studied a cohort of 31 patients who have paediatric-onset movement disorders with unrevealing etiologies. Whole exome sequencing was performed and rare variants were interrogated for pathogenicity. Genetic diagnoses have been confirmed in 10 patients with disease-causing variants in CTNNB1, SPAST, ATP1A3, PURA, SLC2A1, KMT2B, ACTB, GNAO1 and SPG11. 80% (8/10) of patients with genetic diagnosis have potential treatment implications and treatments have been offered to them. One patient with KMT2B dystonia showed clinical improvement with decrease in dystonia after receiving globus pallidus interna deep brain stimulation. Conclusions A diagnostic yield of 32% (10/31) was reported in our cohort and this allows a better prediction of prognosis and contributes to a more effective clinical management. The study highlights the potential of implementing precision medicine in the patients.


2021 ◽  
Vol 2 (1) ◽  
pp. 100383
Author(s):  
Nicholas S. Diab ◽  
Spencer King ◽  
Weilai Dong ◽  
Garrett Allington ◽  
Amar Sheth ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Sara Konstantin Nissen ◽  
Mette Christiansen ◽  
Marie Helleberg ◽  
Kathrine Kjær ◽  
Sofie Eg Jørgensen ◽  
...  

2015 ◽  
Vol 13 (S1) ◽  
Author(s):  
E Sanchez ◽  
S Grandemange ◽  
F Tran Mau-Them ◽  
P Louis-Plence ◽  
A Carbasse ◽  
...  

2021 ◽  
Author(s):  
Amein Kadhem AlAli ◽  
Abdulrahman Al-Enazi ◽  
Ahmed Ammar ◽  
Mahmoud Hajj ◽  
Cyril Cyrus ◽  
...  

Abstract Background Epilepsy, a serious chronic neurological condition effecting up to 100 million people globally, has clear genetic underpinnings including common and rare variants. In Saudi Arabia the prevalence of epilepsy is high and caused mainly by perinatal and genetic factors. No whole-exome sequencing (WES) studies have been performed to date in Saudi Arabian Epilepsy cohorts. This offers a unique opportunity for the discovery of rare genetic variants impacting this disease as there is a high rate of consanguinity amongst large tribal pedigrees. Results We performed WES on 144 individuals diagnosed with epilepsy, to interrogate known Epilepsy related genes for known and functional novel variants. We also used an American College of Medical Genetics (ACMG) guideline based variant prioritization approach in an attempt to discover putative causative variants. We identified a 32 potentially causative pathogenic variants across 30 different genes in 44/144 (30%) of these Saudi Epilepsy individuals. We also identified 232 variants of unknown significance (VUS) across 101 different genes in 133/144 (92%) subjects. Strong enrichment of variants of likely pathogenicity were observed in previously described epilepsy-associated loci, and a number of putative pathogenic variants in novel loci are also observed. Conclusion Several putative pathogenic variants known to be epilepsy-related loci were identified for the first time in our population, in addition to several potential new loci have been identified which may be prioritized for further investigation.


2014 ◽  
Vol 10 ◽  
pp. P518-P519
Author(s):  
Margaret Pericak-Vance ◽  
Christiane Reitz ◽  
Brian W. Kunkle ◽  
Badri N. Vardarajan ◽  
Martin A. Kohli ◽  
...  

Haematologica ◽  
2016 ◽  
Vol 101 (10) ◽  
pp. 1170-1179 ◽  
Author(s):  
B. Johnson ◽  
G. C. Lowe ◽  
J. Futterer ◽  
M. Lordkipanidze ◽  
D. MacDonald ◽  
...  

2018 ◽  
Vol 5 (7) ◽  
pp. 832-842 ◽  
Author(s):  
Neha S. Raghavan ◽  
Adam M. Brickman ◽  
Howard Andrews ◽  
Jennifer J. Manly ◽  
Nicole Schupf ◽  
...  

2018 ◽  
Author(s):  
Youngha Lee ◽  
Jin Sook Lee ◽  
Soo Yeon Kim ◽  
Jaeso Cho ◽  
Yongjin Yoo ◽  
...  

AbstractImportanceAccurate diagnosis of pediatric patients with complicated neurological problems demands a well-coordinated combination of robust genetic analytic capability and delicate clinical evaluation. It should be tested whether this challenge can be augmented by whole exome sequencing (WES).ObjectiveTo evaluate the utility of WES-based diagnosis and discovery of novel variants of undiagnosed patients with complex neurodevelopmental problems in a country with a centralized medical system.Design, setting, and participantsA cohort of 352 Korean patients, believed to cover a major portion of the entire country from July 2014 to April 2017, with a broad spectrum of neurodevelopmental disorders without any pathogenic variants revealed by conventional methods were evaluated by trio-based WES at Seoul National University Children’s Hospital.ExposuresWES of patients and parents and subsequent evaluation of genetic variants.Main outcomes and measuresGenetic variants from each patient were evaluated for known disease association and novel variants were assessed for possible involvement with neurodevelopment process.ResultsWe identified disease-causing variants, including newly discovered variants, in 57.4% of the probands, who had underwent a mean of 5.6 years of undiagnosed periods and visited mean of 2.3 tertiary hospitals. The cohort included 112 patients with variants that were previously reported as pathogenic (31.8%), 16 patients with copy number variants (4.5%) and 27 patients with variants that were associated with different clinical symptoms (7.7%). We also discovered potentially pathogenic variants from 47 patients that required further functional assessments (13.4%) and demonstrated potential implications in neurodevelopmental disorders. Following the genetic analysis, we provided more precise treatments to selected patients. A few clinical vignettes are presented that illuminate the potential diagnostic pitfalls that one could have encountered without this approach.Conclusions and relevanceOur results highlight the utility of WES-based diagnosis for improved patient care in a country with a centralized medical system and discovery of novel pathophysiology mechanisms.Key pointsQuestionWhat is the advantage of whole exome sequencing based diagnosis of pediatric neurology patients with unknown rare symptoms in a large tertiary clinic in a country with a centralized medical system?FindingsWhole exome sequencing of 352 Korean patients, with a mean of 5.7 years of undiagnosed period, yielded 44.0% of conservative diagnostic yield. A number of cases were directly benefitted by trio-based WES via termination of diagnostic odyssey, genetic counseling for next offspring, or suggestion of more effective and customized treatment options.MeaningWe report on the establishment of a national-level whole exome-based diagnosis system, with emphasis on deliberate integration of clinical interpretation and genetic analysis. Whole exome sequencing should be a choice of diagnostic tools for pediatric neurologic patients with ambiguous symptoms.


Sign in / Sign up

Export Citation Format

Share Document