P2-131: WHOLE-EXOME SEQUENCING OF HISPANIC EARLY-ONSET ALZHEIMER DISEASE FAMILIES IDENTIFIES RARE VARIANTS IN MULTIPLE ALZHEIMER'S-RELATED GENES

2014 ◽  
Vol 10 ◽  
pp. P518-P519
Author(s):  
Margaret Pericak-Vance ◽  
Christiane Reitz ◽  
Brian W. Kunkle ◽  
Badri N. Vardarajan ◽  
Martin A. Kohli ◽  
...  
2015 ◽  
Vol 24 (5) ◽  
pp. 710-716 ◽  
Author(s):  
Gaël Nicolas ◽  
David Wallon ◽  
Camille Charbonnier ◽  
Olivier Quenez ◽  
Stéphane Rousseau ◽  
...  

2015 ◽  
Vol 11 (7S_Part_5) ◽  
pp. P251-P251
Author(s):  
Gary W. Beecham ◽  
Brian W. Kunkle ◽  
Badri Vardarajan ◽  
Patrice L. Whitehead ◽  
Sophie Rolati ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Anna Ka-Yee Kwong ◽  
Mandy Ho-Yin Tsang ◽  
Jasmine Lee-Fong Fung ◽  
Christopher Chun-Yu Mak ◽  
Kate Lok-San Chan ◽  
...  

Abstract Background Movement disorders are a group of heterogeneous neurological diseases including hyperkinetic disorders with unwanted excess movements and hypokinetic disorders with reduction in the degree of movements. The objective of our study is to investigate the genetic etiology of a cohort of paediatric patients with movement disorders by whole exome sequencing and to review the potential treatment implications after a genetic diagnosis. Results We studied a cohort of 31 patients who have paediatric-onset movement disorders with unrevealing etiologies. Whole exome sequencing was performed and rare variants were interrogated for pathogenicity. Genetic diagnoses have been confirmed in 10 patients with disease-causing variants in CTNNB1, SPAST, ATP1A3, PURA, SLC2A1, KMT2B, ACTB, GNAO1 and SPG11. 80% (8/10) of patients with genetic diagnosis have potential treatment implications and treatments have been offered to them. One patient with KMT2B dystonia showed clinical improvement with decrease in dystonia after receiving globus pallidus interna deep brain stimulation. Conclusions A diagnostic yield of 32% (10/31) was reported in our cohort and this allows a better prediction of prognosis and contributes to a more effective clinical management. The study highlights the potential of implementing precision medicine in the patients.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Sara Konstantin Nissen ◽  
Mette Christiansen ◽  
Marie Helleberg ◽  
Kathrine Kjær ◽  
Sofie Eg Jørgensen ◽  
...  

2018 ◽  
Vol 9 ◽  
Author(s):  
Mathias Cavaillé ◽  
Flora Ponelle-Chachuat ◽  
Nancy Uhrhammer ◽  
Sandrine Viala ◽  
Mathilde Gay-Bellile ◽  
...  

2021 ◽  
Author(s):  
Amein Kadhem AlAli ◽  
Abdulrahman Al-Enazi ◽  
Ahmed Ammar ◽  
Mahmoud Hajj ◽  
Cyril Cyrus ◽  
...  

Abstract Background Epilepsy, a serious chronic neurological condition effecting up to 100 million people globally, has clear genetic underpinnings including common and rare variants. In Saudi Arabia the prevalence of epilepsy is high and caused mainly by perinatal and genetic factors. No whole-exome sequencing (WES) studies have been performed to date in Saudi Arabian Epilepsy cohorts. This offers a unique opportunity for the discovery of rare genetic variants impacting this disease as there is a high rate of consanguinity amongst large tribal pedigrees. Results We performed WES on 144 individuals diagnosed with epilepsy, to interrogate known Epilepsy related genes for known and functional novel variants. We also used an American College of Medical Genetics (ACMG) guideline based variant prioritization approach in an attempt to discover putative causative variants. We identified a 32 potentially causative pathogenic variants across 30 different genes in 44/144 (30%) of these Saudi Epilepsy individuals. We also identified 232 variants of unknown significance (VUS) across 101 different genes in 133/144 (92%) subjects. Strong enrichment of variants of likely pathogenicity were observed in previously described epilepsy-associated loci, and a number of putative pathogenic variants in novel loci are also observed. Conclusion Several putative pathogenic variants known to be epilepsy-related loci were identified for the first time in our population, in addition to several potential new loci have been identified which may be prioritized for further investigation.


2019 ◽  
Vol 25 (11) ◽  
pp. 1788-1795 ◽  
Author(s):  
Thomas Magg ◽  
Anna Shcherbina ◽  
Duran Arslan ◽  
Mukesh M Desai ◽  
Sarah Wall ◽  
...  

Abstract Background Children with very early onset inflammatory bowel diseases (VEO-IBD) often have a refractory and severe disease course. A significant number of described VEO-IBD-causing monogenic disorders can be attributed to defects in immune-related genes. The diagnosis of the underlying primary immunodeficiency (PID) often has critical implications for the treatment of patients with IBD-like phenotypes. Methods To identify the molecular etiology in 5 patients from 3 unrelated kindred with IBD-like symptoms, we conducted whole exome sequencing. Immune workup confirmed an underlying PID. Results Whole exome sequencing revealed 3 novel CARMIL2 loss-of-function mutations in our patients. Immunophenotyping of peripheral blood mononuclear cells showed reduction of regulatory and effector memory T cells and impaired B cell class switching. The T cell proliferation and activation assays confirmed defective responses to CD28 costimulation, consistent with CARMIL2 deficiency. Conclusion Our study highlights that human CARMIL2 deficiency can manifest with IBD-like symptoms. This example illustrates that early diagnosis of underlying PID is crucial for the treatment and prognosis of children with VEO-IBD.


2017 ◽  
Vol 16 (5) ◽  
pp. 6620-6625
Author(s):  
Qian Han ◽  
Wenwen Zhang ◽  
Changjian Liu ◽  
Min Zhou ◽  
Feng Ran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document