scholarly journals Chemostratigraphic correlations across the first major trilobite extinction and faunal turnovers between Laurentia and South China

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jih-Pai Lin ◽  
Frederick A. Sundberg ◽  
Ganqing Jiang ◽  
Isabel P. Montañez ◽  
Thomas Wotte

AbstractDuring Cambrian Stage 4 (~514 Ma) the oceans were widely populated with endemic trilobites and three major faunas can be distinguished: olenellids, redlichiids, and paradoxidids. The lower–middle Cambrian boundary in Laurentia was based on the first major trilobite extinction event that is known as the Olenellid Biomere boundary. However, international correlation across this boundary (the Cambrian Series 2–Series 3 boundary) has been a challenge since the formal proposal of a four-series subdivision of the Cambrian System in 2005. Recently, the base of the international Cambrian Series 3 and of Stage 5 has been named as the base of the Miaolingian Series and Wuliuan Stage. This study provides detailed chemostratigraphy coupled with biostratigraphy and sequence stratigraphy across this critical boundary interval based on eight sections in North America and South China. Our results show robust isotopic evidence associated with major faunal turnovers across the Cambrian Series 2–Series 3 boundary in both Laurentia and South China. While the olenellid extinction event in Laurentia and the gradual extinction of redlichiids in South China are linked by an abrupt negative carbonate carbon excursion, the first appearance datum of Oryctocephalus indicus is currently the best horizon to achieve correlation between the two regions.

2021 ◽  
Vol 86 (2) ◽  
pp. 425-427
Author(s):  
John P. Hart ◽  
William A. Lovis ◽  
M. Anne Katzenberg

Emerson and colleagues (2020) provide new isotopic evidence on directly dated human bone from the Greater Cahokia region. They conclude that maize was not adopted in the region prior to AD 900. Placing this result within the larger context of maize histories in northeastern North America, they suggest that evidence from the lower Great Lakes and St. Lawrence River valley for earlier maize is “enigmatic” and “perplexing.” Here, we review that evidence, accumulated over the course of several decades, and question why Emerson and colleagues felt the need to offer opinions on that evidence without providing any new contradictory empirical evidence for the region.


2021 ◽  
Vol 95 (S83) ◽  
pp. 1-41
Author(s):  
John S. Peel

AbstractAn assemblage of 50 species of small shelly fossils is described from Cambrian Series 2 (Stage 4) strata in North Greenland, the present day northernmost part of the paleocontinent of Laurentia. The fossils are derived from the basal member of the Aftenstjernesø Formation at Navarana Fjord, northern Lauge Koch Land, a condensed unit that accumulated in a sediment-starved outer ramp setting in the transarctic Franklinian Basin, on the Innuitian margin of Laurentia. Most other small shelly fossil assemblages of similar age and composition from North America are described from the Iapetan margin of Laurentia, from North-East Greenland south to Pennsylvania. Trilobites are uncommon, but include Serrodiscus. The Australian bradoriid Spinospitella is represented by a complete shield. Obolella crassa is the only common brachiopod. Hyoliths, including Cassitella, Conotheca, Neogloborilus, and Triplicatella, are abundant and diverse, but most are represented just by opercula. Sclerites interpreted as stem-group aculiferans (sachitids) are conspicuous, including Qaleruaqia, the oldest described paleoloricate, Ocruranus?, Inughuitoconus n. gen., and Hippopharangites. Helcionelloid mollusks are diverse, but not common; they are associated with numerous specimens of the bivalve Pojetaia runnegari. The fauna compares best with that of the upper Bastion Formation of North-East Greenland, the Forteau Formation of western Newfoundland, and the Browns Pond Formation of New York, but several taxa have a world-wide distribution. Many specimens are encrusted with crystals of authigenic albite. New species: Anabarella? navaranae, Stenotheca? higginsi, Figurina? polaris, Hippopharangites groenlandicus, Inughuitoconus borealis, and Ocruranus? kangerluk.UUID: http://zoobank.org/160a17b1-3166-4fcf-9849-a3cabd1e04a3


1988 ◽  
Vol 62 (2) ◽  
pp. 218-233 ◽  
Author(s):  
John Mark Malinky

Concepts of the family Hyolithidae Nicholson fide Fisher and the genera Hyolithes Eichwald and Orthotheca Novak have been expanded through time to encompass a variety of morphologically dissimilar shells. The Hyolithidae is here considered to include only those hyolithid species which have a rounded (convex) dorsum; slopes on the dorsum are inflated, and the venter may be flat or slightly inflated. Hyolithes encompasses species which possess a low dorsum and a prominent longitudinal sulcus along each edge of the dorsum; the ligula is short and the apertural rim is flared. The emended concept of Orthotheca includes only those species of orthothecid hyoliths which have a subtriangular transverse outline and longitudinal lirae covering the shell on both dorsum and venter.Eighteen species of Hyolithes and one species of Orthotheca from the Appalachian region and Western Interior were reexamined in light of more modern taxonomic concepts and standards of quality for type material. Reexamination of type specimens of H. similis Walcott from the Lower Cambrian of Newfoundland, H. whitei Resser from the Lower Cambrian of Nevada, H. billingsi Walcott from the Lower Cambrian of Nevada, H. gallatinensis Resser from the Upper Cambrian of Wyoming, and H. partitus Resser from the Middle Cambrian of Alabama indicates that none of these species represents Hyolithes. Hyolithes similis is here included under the new genus Similotheca, in the new family Similothecidae. Hyolithes whitei is designated as the type species of the new genus Nevadotheca, to which H. billingsi may also belong. Hyolithes gallatinensis is referred to Burithes Missarzhevsky with question, and H. partitus may represent Joachimilites Marek. The type or types of H. attenuatus Walcott, H. cecrops Walcott, H. comptus Howell, H. cowanensis Resser, H. curticei Resser, H. idahoensis Resser, H. prolixus Resser, H. resseri Howell, H. shaleri Walcott, H. terranovicus Walcott, and H. wanneri Resser and Howell lack shells and/or other taxonomically important features such as a complete aperture, rendering the diagnoses of these species incomplete. Their names should only be used for the type specimens until better preserved topotypes become available for study. Morphology of the types of H.? corrugatus Walcott and “Orthotheca” sola Resser does not support placement in the Hyolitha; the affinities of these species are uncertain.


1999 ◽  
Vol 73 (2) ◽  
pp. 164-175 ◽  
Author(s):  
David K. Brezinski

Based on range data and generic composition, four stages of evolution are recognized for late Paleozoic trilobites of the contiguous United States. Stage 1 occurs in the Lower Mississippian (Kinderhookian-Osagean) and is characterized by a generically diverse association of short-ranging, stenotopic species that are strongly provincial. Stage 2 species are present in the Upper Mississippian and consist of a single, eurytopic, pandemic genus, Paladin. Species of Stage 2 are much longer-ranging than those of Stage 1, and some species may have persisted for as long as 12 m.y. Stage 3 is present within Pennsylvanian and Lower Permian strata and consists initially of the eurytopic, endemic genera Sevillia and Ameura as well as the pandemic genus Ditomopyge. During the middle Pennsylvanian the very long-ranging species Ameura missouriensis and Ditomopyge scitula survived for more than 20 m.y. During the late Pennsylvanian and early Permian, a number of pandemic genera appear to have immigrated into what is now North America. Stage 4 is restricted to the Upper Permian (late Leonardian-Guadalupian) strata and is characterized by short-ranging, stenotopic, provincial genera.The main causal factor controlling the four-stage evolution of late Paleozoic trilobites of the United States is interpreted to be eustacy. Whereas Stage 1 represents an adaptive radiation developed during the Lower Mississippian inundation of North America by the Kaskaskia Sequence, Stage 2 is present in strata deposited during the regression of the Kaskaskia sea. Stage 3 was formed during the transgression and stillstand of the Absaroka Sequence and, although initially endemic, Stage 3 faunas are strongly pandemic in the end when oceanic circulation patterns were at a maximum. A mid-Leonardian sea-level drop caused the extinction of Stage 3 fauna. Sea-level rise near the end of the Leonardian and into the Guadalupian created an adaptive radiation of stentopic species of Stage 4 that quickly became extinct with the latest Permian regression.


2016 ◽  
Vol 155 (1) ◽  
pp. 119-131 ◽  
Author(s):  
V. I. DAVYDOV ◽  
J. L. CROWLEY ◽  
M. D. SCHMITZ ◽  
W. S. SNYDER

AbstractThe discovery and dating of a volcanic ash bed within the upper Phosphoria Formation in SE Idaho, USA, is reported. The ash occurs 11 m below the top of the phosphatic Meade Peak Member and yielded a 206Pb/238U date of 260.57 ± 0.07 / 0.14 / 0.31 Ma, i.e. latest Capitanian, Guadalupian. The stratigraphic position of this ash near the top of the Meade Peak phosphatic Member of Phosphoria Formation indicates plausible completeness of the sedimentation within the Guadalupian–Lopingian and probably at the Permo-Triassic (P-T) transitions. The new radiometric age reveals that the regional biostratigraphy and palaeontology of Phosphoria and Park City formations requires serious reconsideration, particularly in cool water conodonts, bryozoans and brachiopods. The new age proposes that the Guadalupian–Lopingian boundary (GLB) coincides with the Meade Peak – Rex contact and consequently with the end-Guadalupian extinction event. The lack of a major unconformity at the P-T transition suggests that the effects of the Sonoma orogeny were not as extensive as has been assumed.


Sign in / Sign up

Export Citation Format

Share Document