scholarly journals Development of Aedes aegypti (Diptera: Culicidae) mosquito larvae in high ammonia sewage in septic tanks causes alterations in ammonia excretion, ammonia transporter expression, and osmoregulation

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andrea C. Durant ◽  
Andrew Donini

AbstractLarvae of the disease vector mosquito, Aedes aegypti (L.) readily develop in ammonia rich sewage in the British Virgin Islands. To understand how the larvae survive in ammonia levels that are lethal to most animals, an examination of ammonia excretory physiology in larvae collected from septic-water and freshwater was carried out. A. aegypti larvae were found to be remarkably plastic in dealing with high external ammonia through the modulation of NH4+ excretion at the anal papillae, measured using the scanning ion-selective electrode technique (SIET), and NH4+ secretion in the primary urine by the Malpighian tubules when developing in septicwater. Ammonia transporters, Amt and Rh proteins, are expressed in ionoregulatory and excretory organs, with increases in Rh protein, Na+-K+-ATPase, and V-type-H+-ATPase expression observed in the Malpighian tubules, hindgut, and anal papillae in septic-water larvae. A comparative approach using laboratory A. aegypti larvae reared in high ammonia septic-water revealed similar responses to collected A. aegypti with regard to altered ammonia secretion and hemolymph ion composition. Results suggest that the observed alterations in excretory physiology of larvae developing in septic-water is a consequence of the high ammonia levels and that A. aegypti larvae may rely on ammonia transporting proteins coupled to active transport to survive in septic-water.

2021 ◽  
Vol 8 ◽  
Author(s):  
Yuqing Chen ◽  
Xuena Huang ◽  
Yiyong Chen ◽  
Aibin Zhan

The outbreak of invasive ascidian Molgula manhattensis has negatively affected marine and coastal ecosystems and caused huge economic loss in various industries such as aquaculture. In mariculture systems usually characterized by high ammonia nitrogen, the capacity of M. manhattensis to defend against drastic ammonia elevation plays a crucial role in its survival and subsequent invasions. However, ammonia coping strategies and associated genes/proteins remain largely unknown. Here we investigated rhesus glycoproteins (Rh)-mediated ammonia transport by identifying all Rh proteins and exploring their mRNA expression regulations under ammonia stress. Three types of primitive Rh proteins were identified, and all contained conserved amino acid residues and functional domains. Ammonia stress largely suppressed the expression of immune-related genes, but rapidly induced the increased expression of Rh genes. Ammonia was converted into glutamine as indicated by the increased expression of glutamine synthetase gene, rather than urea as illustrated by the stable expression of arginase gene. Collectively, M. manhattensis mitigates ammonia challenge by enhancing ammonia excretion through Rh channels and detoxifying ammonia into glutamine. Our results provide insights into the molecular mechanisms underlying high tolerance and invasion success to high ammonia environments by invasive ascidians.


2020 ◽  
Vol 21 (20) ◽  
pp. 7520
Author(s):  
Lucky R. Runtuwene ◽  
Shuichi Kawashima ◽  
Victor D. Pijoh ◽  
Josef S. B. Tuda ◽  
Kyoko Hayashida ◽  
...  

Efforts to determine the mosquito genes that affect dengue virus replication have identified a number of candidates that positively or negatively modify amplification in the invertebrate host. We used deep sequencing to compare the differential transcript abundances in Aedes aegypti 14 days post dengue infection to those of uninfected A. aegypti. The gene lethal(2)-essential-for-life [l(2)efl], which encodes a member of the heat shock 20 protein (HSP20) family, was upregulated following dengue virus type 2 (DENV-2) infection in vivo. The transcripts of this gene did not exhibit differential accumulation in mosquitoes exposed to insecticides or pollutants. The induction and overexpression of l(2)efl gene products using poly(I:C) resulted in decreased DENV-2 replication in the cell line. In contrast, the RNAi-mediated suppression of l(2)efl gene products resulted in enhanced DENV-2 replication, but this enhancement occurred only if multiple l(2)efl genes were suppressed. l(2)efl homologs induce the phosphorylation of eukaryotic initiation factor 2α (eIF2α) in the fruit fly Drosophila melanogaster, and we confirmed this finding in the cell line. However, the mechanism by which l(2)efl phosphorylates eIF2α remains unclear. We conclude that l(2)efl encodes a potential anti-dengue protein in the vector mosquito.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sunil Dhiman ◽  
Kavita Yadav ◽  
B. N. Acharya ◽  
Raj Kumar Ahirwar ◽  
D. Sukumaran

Abstract Background The direct toxicological impact of insecticides on vector mosquitoes has been well emphasized; however, behavioural responses such as excito-repellency and physical avoidance as a result of insecticide exposure have not been much studied. We have demonstrated the excito-repellency and behavioural avoidance in certain vector mosquito species on exposure to a slow-release insecticidal paint (SRIP) formulation in addition to direct toxicity. Methods A SRIP formulation developed by the Defence Research and Development Establishment, Gwalior, contains chlorpyriphos, deltamethrin and pyriproxyfen as active insecticides. Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti mosquitoes were used to study the excito-repellency response of the formulation. The experiments were performed in a specially designed dual-choice exposure and escape chamber made of transparent polymethyl methacrylate. For the experiments, the SRIP formulation was applied undiluted at a rate of 8 m2 per kg on 15 cm2 metallic surfaces. Mosquitoes were introduced into the exposure chamber, and observations of the movement of mosquitoes into the escape chamber through the exit portal were taken at 1-min intervals for up to 30 min. Results The evaluated formulation displayed strong excito-repellency against all three tested vector mosquito species. Results showed that the ET50 (escape time 50%) for Ae. aegypti, An. stephensi and Cx. quinquefasciatus was 20.9 min, 14.5 min and 17.9 min for contact exposure (CE) respectively. Altogether in CE, the escape rates were stronger in An. stephensi mosquitoes at different time intervals compared to Ae. aegypti and Cx. quinquefasciatus mosquitoes. The probit analysis revealed that the determined ET did not deviate from linearity for both non-contact exposure (NCE) and placebo exposure (PE) (χ2 ≤ 7.9; p = 1.0) for Ae. aegypti mosquitoes and for NCE (χ2 = 8.3; p = 1.0) and PE (χ2 = 1.7; p = 1.0) treatments in Cx. quinquefasciatus. Mortality (24 h) was found to be statistically higher (F = 6.4; p = 0.02) in An. stephensi for CE but did not vary for NCE (p ≥ 0.3) and PE (p = 0.6) treatments among the tested mosquito species. Survival probability response suggested that all the three tested species displayed similar survival responses for similar exposures (χ2 ≤ 2.3; p ≥ 0.1). Conclusion The study demonstrates the toxicity and strong behavioural avoidance in known vector mosquito species on exposure to an insecticide-based paint formulation. The combination of insecticides in the present formulation will broaden the overall impact spectrum for protecting users from mosquito bites. The efficacy data generated in the study provide crucial information on the effectiveness of the tested formulation and could be useful in reducing the transmission intensity and disease risk in endemic countries.


1989 ◽  
Vol 35 (1) ◽  
pp. 41-52 ◽  
Author(s):  
D.J. Aneshansley ◽  
C.E. Marler ◽  
K.W. Beyenbach

2001 ◽  
Vol 204 (2) ◽  
pp. 367-378 ◽  
Author(s):  
K.R. O'Connor ◽  
K.W. Beyenbach

Stellate cells of Aedes aegypti Malpighian tubules were investigated using patch-clamp methods to probe the route of transepithelial Cl(−) secretion. Two types of Cl(−) channel were identified in excised, inside-out apical membrane patches. The first Cl(−) channel, type I, had a conductance of 24 pS, an open probability of 0.816+/−0.067, an open time of 867+/−114 ms (mean +/− s.e.m., four patches) and the selectivity sequence I(−)>Cl(−)(much greater than) isethionate>gluconate. The I(−)/Cl(−)>>isethionate>gluconate. The I(−)Cl(−) permeability ratio was 1.48, corresponding to Eisenman sequence I. The type I Cl(−) channel was blocked by 2,2′-iminodibenzoic acid (DPC) and niflumic acid (2-[3-(trifluoromethyl)anilo]nicotinic acid). The removal of Ca(2+) from the Ringer's solution on the cytoplasmic side had no effect on channel activity. The second Cl(−) channel, type II, had a conductance of 8 pS, an open probability of 0.066+/−0.021 and an open time of 7.53+/−1.46 ms (mean +/− s.e.m., four patches). The high density and halide selectivity sequence of the type I Cl(−) channel is consistent with a role in transepithelial Cl(−) secretion under control conditions, but it remains to be determined whether these Cl(−) channels also mediate transepithelial Cl(−) secretion under diuretic conditions in the presence of leucokinin.


1999 ◽  
Vol 202 (3) ◽  
pp. 247-252 ◽  
Author(s):  
T.M. Clark ◽  
A. Koch ◽  
D.F. Moffett

The ‘stomach’ region of the larval mosquito midgut is divided into histologically distinct anterior and posterior regions. Anterior stomach perfused symmetrically with saline in vitro had an initial transepithelial potential (TEP) of −66 mV (lumen negative) that decayed within 10–15 min to a steady-state TEP near −10 mV that was maintained for at least 1 h. Lumen-positive TEPs were never observed in the anterior stomach. The initial TEP of the perfused posterior stomach was opposite in polarity, but similar in magnitude, to that of the anterior stomach, measuring +75 mV (lumen positive). This initial TEP of the posterior stomach decayed rapidly at first, then more slowly, eventually reversing the electrical polarity of the epithelium as lumen-negative TEPs were recorded in all preparations within 70 min. Nanomolar concentrations of the biogenic amine 5-hydroxytryptamine (5-HT, serotonin) stimulated both regions, causing a negative deflection of the TEP of the anterior stomach and a positive deflection of the TEP of the posterior stomach. Phorbol 12,13-diacetate also caused a negative deflection of the TEP of the anterior stomach, but had no effect on the TEP of the posterior stomach. These data demonstrate that 5-HT stimulates region-specific ion-transport mechanisms in the stomach of Aedes aegypti and suggest that 5-HT coordinates the actions of the Malpighian tubules and midgut in the maintenance of an appropriate hemolymph composition in vivo.


1977 ◽  
Vol 66 (1) ◽  
pp. 83-96 ◽  
Author(s):  
T. J. Bradley ◽  
J. E. Philips

1. Larvae of the saline-water mosquito Aedes campestris were adapted to three waters, all having an osmotic concentration of 700 mOsm, but differing in ionic rations. The (Na+Mg) SO4 medium was much moretoxic than the NAHCO3 or the NaCl media. 2. Ionic and osmotic concentrations of haemolymph and rectal secretion were measured in larvae adapted to all three media. The ratio of ionic concentrations in the rectal secretion reflected those in the external medium to which the larvae had been adapted, with the exception of SO42-, which was possibly replaced by HCO3-in the secretion. These differences in rectal fluid composition persisted even though all ligated recta were bathed in the same artificial haemolymph. 3. The Malpighian tubules were found to be the major site of SO42- excretion. In media containing high levels of NA+, Mg2+, K+, Cl- and HCO3-, the rectum secreted a hyperosmotic fluid containing these ions at concentrations several times greater than those found in the haemolymph. 4. These data provide the basis for speculation on the functioning of anal papillae in waters of diverse chemical composition.


1993 ◽  
Vol 180 (1) ◽  
pp. 323-327 ◽  
Author(s):  
P. J. Walsh ◽  
H. L. Bergman ◽  
A. Narahara ◽  
C. M. Wood ◽  
P. A. Wright ◽  
...  

The Lake Magadi tilapia, Oreochromis alcalicus grahami, is remarkable among teleosts in that it flourishes under extremely well-buffered alkaline water conditions (pH 10, CCO2 180 mmol l-1) at temperatures of 30–40 °C (Wood et al. 1989). As expected from current models in teleosts, ammonia excretion into such water would be difficult at best (Wood, 1993). Part of the survival strategy of the Lake Magadi tilapia is that it has a complete ornithine-urea cycle (O-UC) in the liver and excretes virtually all of its waste nitrogen as urea (Randall et al. 1989). Ammonia toxicity in ammoniotelic teleosts has been studied extensively, and typical values for unionized ammonia (NH3) 96 h LC50 (the concentration at which half of test subjects die after 96 h) are well below 100 micromolar (Haywood, 1983; Thurston et al. 1983a,b; Campbell, 1991). Surprisingly, no ammonia LC50 values are available for ureogenic teleost fish, and one would predict that fish synthesizing and excreting urea for whatever purpose would have higher LC50 values than their ammoniotelic counterparts. Additionally, since ammonia exposure has been implicated in the functional response of urea excretion in the Lake Magadi tilapia (Wood et al. 1989) and another ureogenic teleost (the gulf toadfish Opsanus beta) (Walsh et al. 1990), we reasoned that ammonia exposure in the Lake Magadi tilapia might reveal insights into the biochemical regulation of the O-UC in this species; in particular that it might induce enzyme activity. We report here that the Lake Magadi tilapia has a rather high ammonia LC50 compared to values for other teleosts, but that short-term ammonia exposure has very limited effects on the activities of the enzymes of nitrogen metabolism and on swimming performance.


Sign in / Sign up

Export Citation Format

Share Document