scholarly journals Oral Microbiota Development in Early Childhood

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Beatrice Kennedy ◽  
Sari Peura ◽  
Ulf Hammar ◽  
Silvia Vicenzi ◽  
Anna Hedman ◽  
...  

AbstractEarly life determinants of the oral microbiota have not been thoroughly elucidated. We studied the association of birth and early childhood characteristics with oral microbiota composition using 16 S ribosomal RNA (rRNA) gene sequencing in a population-based Swedish cohort of 59 children sampled at 6, 12 and 24 months of age. Repeated-measurement regression models adjusted for potential confounders confirmed and expanded previous knowledge about the profound shift of oral microbiota composition in early life. These alterations included increased alpha diversity, decreased beta diversity and alteration of bacterial composition with changes in relative abundance of 14 of the 20 most common operational taxonomic units (OTUs). We also found that birth characteristics, breastfeeding and antibiotic use were associated with overall phyla distribution and/or with the relative abundance of specific OTUs. Further, we detected a novel link between morning salivary cortisol level, a physiological marker of neuroendocrine activity and stress, and overall phyla distribution as well as with decreased abundance of the most common OTU mapped to the Streptococcaceae family. In conclusion, a major part of the maturation of the oral microbiome occurs during the first two years of life, and this development may be influenced by early life circumstances.

Nutrients ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1346 ◽  
Author(s):  
Nuria Jiménez-Hernández ◽  
Sergio Serrano-Villar ◽  
Alba Domingo ◽  
Xavier Pons ◽  
Alejandro Artacho ◽  
...  

Human immunodeficiency virus (HIV) infection is characterized by an early depletion of the mucosal associated T helper (CD4+) cells that impair the host immunity and impact the oral and gut microbiomes. Although, the HIV-associated gut microbiota was studied in depth, few works addressed the dysbiosis of oral microbiota in HIV infection and, to our knowledge, no studies on intervention with prebiotics were performed. We studied the effect of a six-week-long prebiotic administration on the salivary microbiota in HIV patients and healthy subjects. Also, the co-occurrence of saliva microorganisms in the fecal bacteria community was explored. We assessed salivary and feces microbiota composition using deep 16S ribosomal RNA (rRNA) gene sequencing with Illumina methodology. At baseline, the different groups shared the same most abundant genera, but the HIV status had an impact on the saliva microbiota composition and diversity parameters. After the intervention with prebiotics, we found a drastic decrease in alpha diversity parameters, as well as a change of beta diversity, without a clear directionality toward a healthy microbiota. Interestingly, we found a differential response to the prebiotics, depending on the initial microbiota. On the basis of 100% identity clustering, we detected saliva sequences in the feces datasets, suggesting a drag of microorganisms from the upper to the lower gastrointestinal tract.


Nutrients ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 614 ◽  
Author(s):  
Nida Murtaza ◽  
Louise Burke ◽  
Nicole Vlahovich ◽  
Bronwen Charlesson ◽  
Hayley O’Neill ◽  
...  

Although the oral microbiota is known to play a crucial role in human health, there are few studies of diet x oral microbiota interactions, and none in elite athletes who may manipulate their intakes of macronutrients to achieve different metabolic adaptations in pursuit of optimal endurance performance. The aim of this study was to investigate the shifts in the oral microbiome of elite male endurance race walkers from Europe, Asia, the Americas and Australia, in response to one of three dietary patterns often used by athletes during a period of intensified training: a High Carbohydrate (HCHO; n = 9; with 60% energy intake from carbohydrates; ~8.5 g kg−1 day−1 carbohydrate, ~2.1 g kg−1 day−1 protein, 1.2 g kg−1 day−1 fat) diet, a Periodised Carbohydrate (PCHO; n = 10; same macronutrient composition as HCHO, but the intake of carbohydrates is different across the day and throughout the week to support training sessions with high or low carbohydrate availability) diet or a ketogenic Low Carbohydrate High Fat (LCHF; n = 10; 0.5 g kg−1 day−1 carbohydrate; 78% energy as fat; 2.1 g kg−1 day−1 protein) diet. Saliva samples were collected both before (Baseline; BL) and after the three-week period (Post treatment; PT) and the oral microbiota profiles for each athlete were produced by 16S rRNA gene amplicon sequencing. Principal coordinates analysis of the oral microbiota profiles based on the weighted UniFrac distance measure did not reveal any specific clustering with respect to diet or athlete ethnic origin, either at baseline (BL) or following the diet-training period. However, discriminant analyses of the oral microbiota profiles by Linear Discriminant Analysis (LDA) Effect Size (LEfSe) and sparse Partial Least Squares Discriminant Analysis (sPLS-DA) did reveal changes in the relative abundance of specific bacterial taxa, and, particularly, when comparing the microbiota profiles following consumption of the carbohydrate-based diets with the LCHF diet. These analyses showed that following consumption of the LCHF diet the relative abundances of Haemophilus, Neisseria and Prevotella spp. were decreased, and the relative abundance of Streptococcus spp. was increased. Such findings suggest that diet, and, in particular, the LCHF diet can induce changes in the oral microbiota of elite endurance walkers.


Author(s):  
Yu Zhang ◽  
Ce Zhu ◽  
Guizhi Cao ◽  
Jingyu Zhan ◽  
Xiping Feng ◽  
...  

ObjectiveThis longitudinal study was aimed to evaluate the dynamic shift in oral microbiota during the process of halitosis progression among preschool children.MethodsThe oral examinations, questionnaires and tongue coating specimens were collected at the baseline and 12-month follow-up. All children were oral healthy at the enrollment. At the 12-month follow-up, children who developed halitosis were included to the halitosis group (n = 10). While children who matched the age, gender, kindergarten and without halitosis were included to the control group (n = 10). 16S rRNA gene sequencing was used to reveal the shift of the tongue coating microbiome in these children during the 12- month period with the Human Oral Microbiome Database.ResultsA remarkable shift in relative abundance of specific bacteria was observed prior to halitosis development. The principal coordinates and alpha diversity analyses revealed different shifting patterns of halitosis and the healthy participants’ microbiome structures and bacterial diversity over the 12-month follow-up. Both groups showed variable microbiota community structures before the onset of halitosis. Halitosis-enriched species Prevotella melaninogenica, Actinomyces sp._HMT_180 and Saccharibacteria TM7_G-1_bacterium_HMT_352 were finally selected as biomarkers in the halitosis-onset prediction model after screening, with a prediction accuracy of 91.7%.ConclusionsThe microbiome composition and relative abundance of the tongue coatings in the halitosis and control groups remarkably differed, even prior to the onset of the clinical manifestations of halitosis. The halitosis prediction model constructed on the basis of tongue coating microbiome biomarkers indicated the microbial shifts before the halitosis onset. Therefore, this can be considered for the timely detection and intervention of halitosis in children.


Author(s):  
Yongde Yang ◽  
Xuan Yu ◽  
Xue Yang ◽  
Kuan Zeng ◽  
Guangya Liu ◽  
...  

The poor oral health condition of individuals who abuse methamphetamine (MA) is well known. The roles of the oral and fecal microbiomes in addiction and nervous system diseases have been the focus of many studies. However, changes in the microbiota composition of MA users have not been reported. This was addressed in the present study in 20 MA users and 14 sex-matched healthy subjects. Saliva samples were collected and high-throughput 16S rRNA sequencing and bioinformatic analysis were performed to evaluate oral microbiome profiles. The results showed that species richness was significantly lower in the MA group than in the control group. Bacterial taxa that are known to be related to oral diseases such as Negativicutes, Veillonellaceae, Veillonella, and Selenomonadales had higher relative abundance in the MA group than in the control group, and the relative abundance of Prevotella melaninogenica—a putative etiologic agent of periodontal disease—was also higher. Avoiding MA use and improving oral hygiene practices over a short term (i.e., during hospitalization for 2 weeks) did not alter the oral microbiota composition of MA users. Although the causal relationship between changes in oral microbiome profile and MA abuse remains to be determined, our results suggest that oral disease prevention and treatment strategies are important for MA users.


2020 ◽  
Vol 48 (04) ◽  
pp. 923-944 ◽  
Author(s):  
Meng Liu ◽  
Xiting Wang ◽  
Fengzhi Wu ◽  
Ning Dai ◽  
Mindan Chen ◽  
...  

Chronic insomnia is a disease which brings intense mental pain and disturbing complications to patients worldwide. The oral microbiome exhibits a mechanistic influence on human health. Therefore, it is crucial to understand the oral microbial diversity in insomnia. Tongue diagnosis has been considered a critical basic procedure in insomnia therapeutic decision-making in Traditional Chinese Medicine (TCM). Hence, it is significant to elucidate the various oral microbiome differences in chronic insomnia patients with different tongue features. In this paper, we used 16S rRNA gene sequencing and bioinformatics analysis to investigate dynamic changes in oral bacterial profile and correlations between chronic insomnia patients and healthy individuals, as well as in patients with different tongue coatings. Moreover, the relationship between the severity of insomnia and oral microbiota was explored. Our findings showed that chronic insomnia patients harbored a significantly higher diversity of oral bacteria when compared to healthy controls. More importantly, the results revealed that the diversity and relative abundance of the bacterial community was significantly altered among different tongue coatings in patients but not in healthy individuals. Oral bacteria with a relative abundance [Formula: see text]1% and [Formula: see text] among different tongue groups were considered remarkable bacteria, which included three phyla Proteobacteria, Bacteroidetes, Gracilibacteria, and four genera, Streptococcus, Prevotella_7, Rothia, and Neisseria. Our findings indicate that changes in oral microbiome correlate with tongue coatings in patients with chronic insomnia. Thus, the remarkable microbiome may provide inspiration for further studies on the correlation between tongue diagnosis and oral microbiome in chronic insomnia patients.


2020 ◽  
pp. 002203452097992
Author(s):  
A. Grier ◽  
J.A. Myers ◽  
T.G. O’Connor ◽  
R.G. Quivey ◽  
S.R. Gill ◽  
...  

As the most common chronic disease in preschool children in the United States, early childhood caries (ECC) has a profound impact on a child’s quality of life, represents a tremendous human and economic burden to society, and disproportionately affects those living in poverty. Caries risk assessment (CRA) is a critical component of ECC management, yet the accuracy, consistency, reproducibility, and longitudinal validation of the available risk assessment techniques are lacking. Molecular and microbial biomarkers represent a potential source for accurate and reliable dental caries risk and onset. Next-generation nucleotide-sequencing technology has made it feasible to profile the composition of the oral microbiota. In the present study, 16S ribosomal RNA (rRNA) gene sequencing was applied to saliva samples that were collected at 6-mo intervals for 24 mo from a subset of 56 initially caries-free children from an ongoing cohort of 189 children, aged 1 to 3 y, over the 2-y study period; 36 children developed ECC and 20 remained caries free. Analyses from machine learning models of microbiota composition, across the study period, distinguished between affected and nonaffected groups at the time of their initial study visits with an area under the receiver operating characteristic curve (AUC) of 0.71 and discriminated ECC-converted from healthy controls at the visit immediately preceding ECC diagnosis with an AUC of 0.89, as assessed by nested cross-validation. Rothia mucilaginosa, Streptococcus sp., and Veillonella parvula were selected as important discriminatory features in all models and represent biomarkers of risk for ECC onset. These findings indicate that oral microbiota as profiled by high-throughput 16S rRNA gene sequencing is predictive of ECC onset.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261032
Author(s):  
Vanessa DeClercq ◽  
Jacob T. Nearing ◽  
Morgan G. I. Langille

Background Commonly used medications produce changes in the gut microbiota, however, the impact of these medications on the composition of the oral microbiota is understudied. Methods Saliva samples were obtained from 846 females and 368 males aged 35–69 years from a Canadian population cohort, the Atlantic Partnership for Tomorrow’s Health (PATH). Samples were analyzed by 16S rRNA gene sequencing and differences in microbial community compositions between nonusers, single-, and multi-drug users as well as the 3 most commonly used medications (thyroid hormones, statins, and proton pump inhibitors (PPI)) were examined. Results Twenty-six percent of participants were taking 1 medication and 21% were reported taking 2 or more medications. Alpha diversity indices of Shannon diversity, Evenness, Richness, and Faith’s phylogenetic diversity were similar among groups, likewise beta diversity as measured by Bray-Curtis dissimilarity (R2 = 0.0029, P = 0.053) and weighted UniFrac distances (R2 = 0.0028, P = 0.161) were non-significant although close to our alpha value threshold (P = 0.05). After controlling for covariates (sex, age, BMI), six genera (Saprospiraceae uncultured, Bacillus, Johnsonella, Actinobacillus, Stenotrophomonas, and Mycoplasma) were significantly different from non-medication users. Thyroid hormones, HMG-CoA reductase inhibitors (statins) and PPI were the most reported medications. Shannon diversity differed significantly among those taking no medication and those taking only thyroid hormones, however, there were no significant difference in other measures of alpha- or beta diversity with single thyroid hormone, statin, or PPI use. Compared to participants taking no medications, the relative abundance of eight genera differed significantly in participants taking thyroid hormones, six genera differed in participants taking statins, and no significant differences were observed with participants taking PPI. Conclusion The results from this study show negligible effect of commonly used medications on microbial diversity and small differences in the relative abundance of specific taxa, suggesting a minimal influence of commonly used medication on the salivary microbiome of individuals living without major chronic conditions.


2021 ◽  
Vol 43 (3) ◽  
pp. 1460-1472
Author(s):  
Vivianne Cruz de Jesus ◽  
Manu Singh ◽  
Robert J. Schroth ◽  
Prashen Chelikani ◽  
Carol A. Hitchon

The association of taste genetics and the oral microbiome in autoimmune diseases such as rheumatoid arthritis (RA) has not been reported. We explored a novel oral mucosal innate immune pathway involving the bitter taste G protein-coupled receptor T2R38. This case–control study aimed to evaluate whether T2R38 polymorphisms associate with the buccal microbial composition in RA. Genomic DNA was obtained from buccal swabs of 35 RA patients and 64 non-RA controls. TAS2R38 genotypes were determined by Sanger sequencing. The buccal microbiome was assessed by Illumina MiSeq sequencing of the V4-16S rRNA gene. Bacterial community differences were analyzed with alpha and beta diversity measures. Linear discriminant analysis effect size identified taxa discriminating between RA versus non-RA and across TAS2R38 genotypes. TAS2R38 genotype frequency was similar between RA and non-RA controls (PAV/PAV; PAV/AVI; AVI/AVI: RA 42.9%; 45.7%; 11.4% versus controls 32.8%; 48.4%; 18.8%, chi-square (2, N = 99) = 2.1, p = 0.35). The relative abundance of Porphyromonas, among others, differed between RA and non-RA controls. The relative abundance of several bacterial species also differed across TAS2R38 genotypes. These findings suggest an association between T2R38 polymorphisms and RA buccal microbial composition. However, further research is needed to understand the impact of T2R38 in oral health and RA development.


2022 ◽  
Author(s):  
Yan-Fu Qu ◽  
Yan-Qing Wu ◽  
Yi-Jin Jiang ◽  
Xiang Ji

Abstract Background: Various external and internal factors affect the gut microbiota of animals. The colonization and proliferation of gut microbes have been studied in a diverse array of animal taxa but remain poorly known in snakes. Here, we used the 16S rRNA gene sequencing technology on the Roach 454 platform to analyze the gut microbiota composition using fecal samples collected from three snake groups [gravid females, newly hatched (preprandial) hatchlings and postprandial hatchlings] of two congeneric colubrid snake species (Elaphe carinata and E. taeniura) that are sympatric across a wide range in mainland China. We tested two hypotheses. First, the gut microbiota should not differ between the two species at hatching if the maternal or genetic contribution has no role in affecting post-hatching gut microbial colonization. Second, differences in the gut microbiota between newly hatched (preprandial) and postprandial hatchlings should not exist in both species if the dietary contribution has no role in affecting post-hatching gut microbial colonization.Results: The top three dominant phyla were Firmicutes, Bacteroidetes, and Proteobacteria in both species. None of the measured alpha diversity indexes differed among the three snake groups or between the two species. The relative abundance of the gut microbiota differed among the three snake groups and between the two species, and so did the relative abundances of the functions associated with the metabolism, cellular processes and environmental information processing. Evidence from gravid females and hatchlings showed that the gut microbiota composition was similar between the two species. The metabolism held the overwhelming predominance of functional categories at the top level in both species.Conclusion: Only the relative abundance of the gut microbiota differed between the two species, and the gut microbiota composition changed rapidly in postprandial hatchlings and differed among the three snakes groups in both species. From these findings, we may conclude that the dietary rather than the maternal or genetic contribution affects gut microbial colonization in snakes.


2021 ◽  
Vol 9 (8) ◽  
pp. 1657
Author(s):  
Anders Esberg ◽  
Linda Johansson ◽  
Ingegerd Johansson ◽  
Solbritt Rantapää Dahlqvist

Rheumatoid arthritis (RA) is the most common autoimmune inflammatory disease, and single periodontitis-associated bacteria have been suggested in disease manifestation. Here, the oral microbiota was characterized in relation to the early onset of RA (eRA) taking periodontal status into consideration. 16S rRNA gene amplicon sequencing of saliva bacterial DNA from 61 eRA patients without disease-modifying anti-rheumatic drugs and 59 matched controls was performed. Taxonomic classification at 98.5% was conducted against the Human Oral Microbiome Database, microbiota functions were predicted using PICRUSt, and periodontal status linked from the Swedish quality register for clinically assessed caries and periodontitis. The participants were classified into three distinct microbiota-based cluster groups with cluster allocation differences by eRA status. Independently of periodontal status, eRA patients had enriched levels of Prevotella pleuritidis, Treponema denticola, Porphyromonas endodontalis and Filifactor alocis species and in the Porphyromonas and Fusobacterium genera and functions linked to ornithine metabolism, glucosylceramidase, beta-lactamase resistance, biphenyl degradation, fatty acid metabolism and 17-beta-estradiol-17-dehydrogenase metabolism. The results support a deviating oral microbiota composition already in eRA patients compared with healthy controls and highlight a panel of oral bacteria that may be useful in eRA risk assessment in both periodontally healthy and diseased persons.


Sign in / Sign up

Export Citation Format

Share Document