scholarly journals Unsupervised Pre-training of a Deep LSTM-based Stacked Autoencoder for Multivariate Time Series Forecasting Problems

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Alaa Sagheer ◽  
Mostafa Kotb

AbstractCurrently, most real-world time series datasets are multivariate and are rich in dynamical information of the underlying system. Such datasets are attracting much attention; therefore, the need for accurate modelling of such high-dimensional datasets is increasing. Recently, the deep architecture of the recurrent neural network (RNN) and its variant long short-term memory (LSTM) have been proven to be more accurate than traditional statistical methods in modelling time series data. Despite the reported advantages of the deep LSTM model, its performance in modelling multivariate time series (MTS) data has not been satisfactory, particularly when attempting to process highly non-linear and long-interval MTS datasets. The reason is that the supervised learning approach initializes the neurons randomly in such recurrent networks, disabling the neurons that ultimately must properly learn the latent features of the correlated variables included in the MTS dataset. In this paper, we propose a pre-trained LSTM-based stacked autoencoder (LSTM-SAE) approach in an unsupervised learning fashion to replace the random weight initialization strategy adopted in deep LSTM recurrent networks. For evaluation purposes, two different case studies that include real-world datasets are investigated, where the performance of the proposed approach compares favourably with the deep LSTM approach. In addition, the proposed approach outperforms several reference models investigating the same case studies. Overall, the experimental results clearly show that the unsupervised pre-training approach improves the performance of deep LSTM and leads to better and faster convergence than other models.

Author(s):  
Pradeep Lall ◽  
Tony Thomas ◽  
Ken Blecker

Abstract This study focuses on the feature vector identification and Remaining Useful Life (RUL) estimation of SAC305 solder alloy PCB's of two different configurations during varying conditions of temperature and vibration. The feature vectors are identified using the strain signals acquired from four symmetrical locations of the PCB at regular intervals during vibration. Two different types of experiments are employed to characterize the PCB's dynamic changes with varying temperature and acceleration levels. The strain signals acquired during each of these experiments are compared based on both time and frequency domain characteristics. Different statistical and frequency-based techniques were used to identify the strain signal variations with changes in the environment and loading conditions. The feature vectors in predicting failure at a constant working temperature and load were identified, and as an extension to this work, the effectiveness of the feature vectors during varying conditions of temperature and acceleration levels are investigated. The remaining Useful Life of the packages was estimated using a deep learning approach based on Long Short Term Memory (LSTM) network. This technique can identify the underlying patterns in multivariate time series data that can predict the packages' life. The autocorrelation function's residuals were used as the multivariate time series data in conjunction with the LSTM deep learning technique to forecast the packages' life at different varying temperatures and acceleration levels during vibration.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhiwei Ji ◽  
Jiaheng Gong ◽  
Jiarui Feng

Anomalies in time series, also called “discord,” are the abnormal subsequences. The occurrence of anomalies in time series may indicate that some faults or disease will occur soon. Therefore, development of novel computational approaches for anomaly detection (discord search) in time series is of great significance for state monitoring and early warning of real-time system. Previous studies show that many algorithms were successfully developed and were used for anomaly classification, e.g., health monitoring, traffic detection, and intrusion detection. However, the anomaly detection of time series was not well studied. In this paper, we proposed a long short-term memory- (LSTM-) based anomaly detection method (LSTMAD) for discord search from univariate time series data. LSTMAD learns the structural features from normal (nonanomalous) training data and then performs anomaly detection via a statistical strategy based on the prediction error for observed data. In our experimental evaluation using public ECG datasets and real-world datasets, LSTMAD detects anomalies more accurately than other existing approaches in comparison.


Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 876 ◽  
Author(s):  
Renzhuo Wan ◽  
Shuping Mei ◽  
Jun Wang ◽  
Min Liu ◽  
Fan Yang

Multivariable time series prediction has been widely studied in power energy, aerology, meteorology, finance, transportation, etc. Traditional modeling methods have complex patterns and are inefficient to capture long-term multivariate dependencies of data for desired forecasting accuracy. To address such concerns, various deep learning models based on Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN) methods are proposed. To improve the prediction accuracy and minimize the multivariate time series data dependence for aperiodic data, in this article, Beijing PM2.5 and ISO-NE Dataset are analyzed by a novel Multivariate Temporal Convolution Network (M-TCN) model. In this model, multi-variable time series prediction is constructed as a sequence-to-sequence scenario for non-periodic datasets. The multichannel residual blocks in parallel with asymmetric structure based on deep convolution neural network is proposed. The results are compared with rich competitive algorithms of long short term memory (LSTM), convolutional LSTM (ConvLSTM), Temporal Convolution Network (TCN) and Multivariate Attention LSTM-FCN (MALSTM-FCN), which indicate significant improvement of prediction accuracy, robust and generalization of our model.


2020 ◽  
Vol 34 (02) ◽  
pp. 1403-1411
Author(s):  
Dixian Zhu ◽  
Dongjin Song ◽  
Yuncong Chen ◽  
Cristian Lumezanu ◽  
Wei Cheng ◽  
...  

Multivariate time series data are becoming increasingly ubiquitous in varies real-world applications such as smart city, power plant monitoring, wearable devices, etc. Given the current time series segment, how to retrieve similar segments within the historical data in an efficient and effective manner is becoming increasingly important. As it can facilitate underlying applications such as system status identification, anomaly detection, etc. Despite the fact that various binary coding techniques can be applied to this task, few of them are specially designed for multivariate time series data in an unsupervised setting. To this end, we present Deep Unsupervised Binary Coding Networks (DUBCNs) to perform multivariate time series retrieval. DUBCNs employ the Long Short-Term Memory (LSTM) encoder-decoder framework to capture the temporal dynamics within the input segment and consist of three key components, i.e., a temporal encoding mechanism to capture the temporal order of different segments within a mini-batch, a clustering loss on the hidden feature space to capture the hidden feature structure, and an adversarial loss based upon Generative Adversarial Networks (GANs) to enhance the generalization capability of the generated binary codes. Thoroughly empirical studies on three public datasets demonstrated that the proposed DUBCNs can outperform state-of-the-art unsupervised binary coding techniques.


Author(s):  
Chenxi Sun ◽  
Shenda Hong ◽  
Moxian Song ◽  
Yen-Hsiu Chou ◽  
Yongyue Sun ◽  
...  

Prediction based on Irregularly Sampled Time Series (ISTS) is of wide concern in real-world applications. For more accurate prediction, methods had better grasp more data characteristics. Different from ordinary time series, ISTS is characterized by irregular time intervals of intra-series and different sampling rates of inter-series. However, existing methods have suboptimal predictions due to artificially introducing new dependencies in a time series and biasedly learning relations among time series when modeling these two characteristics. In this work, we propose a novel Time Encoding (TE) mechanism. TE can embed the time information as time vectors in the complex domain. It has the properties of absolute distance and relative distance under different sampling rates, which helps to represent two irregularities. Meanwhile, we create a new model named Time Encoding Echo State Network (TE-ESN). It is the first ESNs-based model that can process ISTS data. Besides, TE-ESN incorporates long short-term memories and series fusion to grasp horizontal and vertical relations. Experiments on one chaos system and three real-world datasets show that TE-ESN performs better than all baselines and has better reservoir property.


2021 ◽  
Author(s):  
Zuguang Gu ◽  
Daniel Huebschmann

Spiral layout has two major advantages for data visualization. First, it is able to visualize data with long axes, which greatly improves the resolution of visualization. Second, it is efficient for time series data to reveal periodic patterns. Here we present the R package spiralize that provides a general solution for visualizing data on spirals. spiralize implements numerous graphics functions so that self-defined high-level graphics can be easily implemented by users. The power of spiralize is demonstrated by five real world datasets.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tuan D. Pham

AbstractAutomated analysis of physiological time series is utilized for many clinical applications in medicine and life sciences. Long short-term memory (LSTM) is a deep recurrent neural network architecture used for classification of time-series data. Here time–frequency and time–space properties of time series are introduced as a robust tool for LSTM processing of long sequential data in physiology. Based on classification results obtained from two databases of sensor-induced physiological signals, the proposed approach has the potential for (1) achieving very high classification accuracy, (2) saving tremendous time for data learning, and (3) being cost-effective and user-comfortable for clinical trials by reducing multiple wearable sensors for data recording.


Sign in / Sign up

Export Citation Format

Share Document