scholarly journals Prevention of quality decline and delivery of siRNA using exogenous TCTP translocation across the zona pellucida in mouse oocytes

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hyuk-Joon Jeon ◽  
Guang-Yu Bai ◽  
Yuram Park ◽  
Jae-Sung Kim ◽  
Jeong Su Oh

AbstractThe delivery of exogenous molecules into mammalian oocytes or embryos has been a challenge because of the existence of the protective zona pellucida (ZP) surrounding the oocyte membrane. Here we show that exogenous translationally controlled tumor protein (TCTP) is able to translocate into oocytes across the ZP and prevents quality deterioration during in vitro culture. Recombinant TCTP-mCherry added to culture media were incorporated into oocytes after passing through the ZP. After internalization, recombinant TCTP-mCherry were enriched at the cortex with wide distribution within the cytoplasm. This translocation capacity of TCTP is dependent on its N-terminal protein transduction domain (PTD). Moreover, translocated recombinant TCTP-mCherry reduced quality deterioration of oocytes during prolonged in vitro culture, which in turn improved fertilization and early embryo development. Furthermore, conjugates between PTD of TCTP and cyclin B1 siRNAs internalized into the cytoplasm of oocytes and downregulated cyclin B1 level. Therefore, our results are the first to show that TCTP has the ability to translocate into oocyte cytoplasm penetrating through the ZP, providing the possibility for preserving oocyte quality during extended in vitro culture and for delivering siRNAs into mouse oocytes.

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Á Martíne. Moro ◽  
I Lamas-Toranzo ◽  
L González-Brusi ◽  
A Pérez-Gómez ◽  
P Bermejo-Álvarez

Abstract Study question Does cumulus cell mtDNA content correlate with oocyte developmental potential in the bovine model? Summary answer The relative amount of mtDNA content did not vary significantly in oocytes showing different developmental outcomes following IVF What is known already Cumulus cells are closely connected to the oocyte through transzonal projections, serving essential metabolic functions during folliculogenesis. These oocyte-supporting cells are removed and discarded prior to ICSI, thereby constituting an interesting biological material on which to perform molecular analysis aimed to predict oocyte developmental competence. Previous studies have positively associated oocytés mtDNA content with developmental potential in both animal models and women. However, it remains debatable whether mtDNA content in cumulus cells could be used as a proxy to infer oocyte developmental potential. Study design, size, duration Bovine cumulus cells were allocated into three groups according to the developmental potential of the oocyte: 1) oocytes developing to blastocysts following IVF (Bl+Cl+), 2) oocytes cleaving following IVF but arresting their development prior to the blastocyst stage (Bl-Cl+), and 3) oocytes not cleaving following IVF (Bl-Cl-). Relative mtDNA content was analysed in 40 samples/group, each composed by the cumulus cells from one cumulus-oocyte complex (COC). Participants/materials, setting, methods Bovine cumulus-oocyte complexes were obtained from slaughtered cattle and individually matured in vitro (IVM). Following IVM, cumulus cells were removed by hyaluronidase treatment, pelleted, snap frozen in liquid nitrogen and stored at –80 ºC until analysis. Cumulus-free oocytes were fertilized and cultured in vitro individually and development was recorded for each oocyte. Relative mtDNA abundance was determined by qPCR, amplifying a mtDNA sequence (COX1) and a chromosomal sequence (PPIA). Statistical differences were tested by ANOVA. Main results and the role of chance Relative mtDNA abundance did not differ significantly (ANOVA p > 0.05) between the three groups exhibiting different developmental potential (1±0.06 vs. 1.19±0.05 vs. 1.11±0.05, for Bl+Cl+ vs. Bl-Cl+ vs. Bl-Cl-, mean±s.e.m.). Limitations, reasons for caution Experiments were conducted in the bovine model. Although bovine folliculogenesis, monoovulatory ovulation and early embryo development exhibit considerable similarities with that of humans, caution should be taken when extrapolating these data to humans. Wider implications of the findings: The use of molecular markers for oocyte developmental potential in cumulus cells could be used to enhance success rates following single-embryo transfer. Unfortunately, mtDNA in cumulus cells was not found to be a good proxy for oocyte quality. Trial registration number Not applicable


Author(s):  
Ales Sobek ◽  
Emil Tkadlec ◽  
Eva Klaskova ◽  
Martin Prochazka

Abstract The aim of this study was to evaluate if cytoplasmic transfer can improve fertilization and embryo quality of women with oocytes of low quality. During ICSI, 10–15% of the cytoplasm from a fresh or frozen young donor oocyte was added to the recipient oocyte. According to the embryo quality, we defined group A as patients in which the best embryo was evident after cytoplasmic transfer and group B as patients in which the best embryo was evident after a simple ICSI. We investigated in the period of 2002–2018, 125 in vitro fertilization cycles involving 1011 fertilized oocytes. Five hundred fifty-seven sibling oocytes were fertilized using ICSI only and 454 oocytes with cytoplasmic transfer. Fertilization rates of oocytes were 67.2% in the cytoplasmic transfer and 53.5% in the ICSI groups (P < 0.001). A reduction in fertilization rate was observed with increased women age in the ICSI but not in the cytoplasmic transfer groups. The best embryo quality was found after cytoplasmic transfer in 78 cycles (62.4%) and without cytoplasmic transfer in 40 cycles (32%, P < 0.001). No significant differences were detected between the age, hormonal levels, dose of stimulation drugs, number of transferred embryos, pregnancy rate and abortion rate between A and B groups. Cytoplasmic transfer improves fertilization rates and early embryo development in humans with low oocyte quality. All 28 children resulting from cytoplasmic transfer are healthy.


2009 ◽  
Vol 21 (1) ◽  
pp. 217
Author(s):  
T. Wakai ◽  
N. Zhang ◽  
R. A. Fissore

Numerous studies have demonstrated that postovulatory aging of oocytes prior to fertilization has detrimental effects on oocyte quality and developmental competence. Oocyte aging is accompanied by abnormal oocyte activation and subsequent development, suggesting a disruption of Ca2+ oscillations after fertilization. The inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) in mammals is responsible for the majority of Ca2+ release during fertilization (Miyazaki S et al. 1993 Dev. Biol.). Previously, we reported that phosphorylation of IP3R1 at an MPM-2 epitope may play an important role in facilitating the induction of Ca2+ oscillations at the MII stage (Lee B et al. 2006 Development), indicating that IP3R1 phosphorylation may be a good indicator of the health of the oocyte. However, few studies have investigated the alteration of the Ca2+ signaling and IP3R1 function associated with oocyte aging. On the other hand, a previous report showed that caffeine increased MPF activity and suppressed fragmentation after parthenogenetic activation of aged oocytes (Kikuchi K et al. 2000 Biol. Reprod.). Therefore, the purpose of the present study was to examine whether and how Ca2+ oscillatory activity changes during oocyte aging and to test if caffeine prevents the negative effects of oocyte aging. MII mouse oocytes were collected 14 h after hCG injection and cultured in vitro for 8, 24 or 48 h with or without caffeine (5 or 10 mm). Oocyte quality was assessed by the occurrence of spontaneous fragmentation, monitoring of Ca2+ oscillations after exposure to 10 mm strontium chloride, Western blot analysis of IP3R1 phosphorylation and immunostaining of IP3R1. In oocytes in vitro aged for 8 h, the duration of the first Ca2+ rise was significantly decreased compared with fresh MII oocytes, although this reduction was not observed in MII oocytes treated with 5 mm caffeine. The phosphorylation of IP3R1 at the MPM-2 epitope was slightly decreased during oocyte aging in both caffeine and noncaffeine treatment. Importantly, whereas IP3R1 in MII oocytes treated for 8 h with 5 mm caffeine displayed the typical cortical cluster organization, IP3R1 in aged oocytes without caffeine became dispersed in the cytoplasm. In addition, caffeine significantly suppressed the spontaneous fragmentation that is normally observed by 48 h of in vitro culture. These results suggest that the Ca2+ oscillatory activity is compromised during oocyte aging and caffeine prevents the loss of integrity of Ca2+ signaling possibly by keeping the cortical distribution of IP3R1.


2016 ◽  
Vol 28 (2) ◽  
pp. 210
Author(s):  
P. Hugon ◽  
J. Lamy ◽  
E. Corbin ◽  
P. Mermillod ◽  
M. Saint-Dizier

This study was designed to evaluate the effects of oviductal fluid at different periovulatory times on oocyte maturation, modification of the zona pellucida (ZP), fertilization and embryo development. Bovine oviducts were collected at a slaughterhouse and classified as preovulatory (pre-ov: 1 pre-ov follicle and a regressing corpus luteum) or post-ovulatory (post-ov: a corpus haemorrhagicum or recent corpus luteum; n = 10 cows/stage). Both oviducts were flushed with 1 mL of sterile TCM-199, and oviductal flushes (OF) were aliquoted and stored at –80°C. Abattoir-derived bovine ovaries were aspirated and cumulus‐oocyte complexes (COC) with at least 3 cumulus layers and homogeneous oocyte cytoplasm were in vitro matured for 22 h in standard maturation medium (control group, n = 319) or in standard medium with 2× concentrated additives supplemented (50% v/v) with pre-ov OF (n = 255) or post-ov OF (n = 248). After in vitro maturation (IVM), subgroups of COC were denuded, and the time of digestion of the ZP by pronase 0.1% (v/v in TCM-199) was determined to evaluate ZP hardening. After IVM, COC were fertilised in vitro for 18–20 h at a final concentration of 1.106 million spermatozoa (spz)/mL. After in vitro fertilization (IVF), COC were denuded, washed twice and cultured for 8 days more under standard conditions. After IVM, IVF, and embryo culture, oocytes/embryos were fixed with ethanol, stained with Hoescht, and examined under fluorescence microscopy for determination of (1) maturation and developmental stages, (2) numbers of fertilised and polyspermic oocytes, and (3) spz bound to the ZP. Percentages were compared between groups by chi-square. Times of ZP digestion were compared by Kruskal‐Wallis test. Numbers of spz bound to the ZP were compared by ANOVA on normalised data followed by Newman-Keuls tests. Data are presented as mean ± SEM. A P < 0.05 was considered significant. Addition of OF during IVM had no effect on maturation rates compared with the control. However, the digestion time of the ZP by pronase was reduced after IVM with pre-ov OF (313 ± 21 s; n = 26) compared with post-ov OF (459 ± 23 s; n = 23) but not with the control (416 ± 30 s; n = 25). After IVF, the number of spermatozoa bound to the ZP was increased after IVM with pre-ov OF (57 ± 5 spz/oocyte; n = 67) and decreased after IVM with post-ov OF (34 ± 3 spz/oocyte; n = 76) compared with the control (42 ± 5 spz/oocyte; n = 60). Addition of OF during IVM had no effect on rates of IVF and polyspermia. However, the rate of development to the blastocyst stage was less after IVM with post-ov OF (10%, n = 97 cleaved oocytes) compared with control (24%, n = 130) and pre-ov OF (29%, n = 101). In conclusion, the OF collected before ovulation decreased the resistance of the ZP to protease digestion and increased its ability to bind spz, whereas it was the opposite for the post-ov OF. Furthermore, the post-ov OF decreased the developmental competence of fertilised oocytes.


2011 ◽  
Vol 23 (1) ◽  
pp. 175 ◽  
Author(s):  
J. J. F. Evangelista ◽  
C. E. A. Souza ◽  
M. E. A. Moraes ◽  
A. A. A. Moura

We assessed the impact of a single intra-muscular injection of vitamins A and E on oocyte quality and yield and early embryo development in Bos indicus cows. Twenty Bos indicus cows, of Gyr, Brahman, and Nellore breeds, weighing between 450 and 600 kg were subjected to ovum pick-up (OPU). Oocytes were collected in Dulbecco’s PBS (DBPS) containing heparin and antibiotics, counted, and morphologically classified. Viable oocytes were taken to the laboratory, in vitro matured for 24 h and in vitro fertilized using 25 million sperm mL–1. After 168 h of incubation (39°C, 5% CO2), viable embryos were counted and classified. Then, after 10 days, the cows received an intra-muscular injection of 1 000 000 UI of vitamin A and 1 g of vitamin E, and, after 12 days, were again subjected to the same procedure described above. Differences in oocyte yield and embryo development were analysed using paired t-test. The 40 OPUs from 20 cows yielded a total of 520 oocytes. Nellore and Brahman cows produced more embryos/cow (P < 0.01) compared with Gyr. After vitamin treatment, the cows produced more oocytes (n = 303; P < 0.01) compared with the previous OPU (n = 217), resulting in 95 more viable oocytes (31%). Brahman, Gyr, and Nellore cows yielded 11.2 ± 1.8, 8.5 ± 1.5, and 12.0 ± 2.6 oocytes before vitamin treatment, respectively. From those oocytes, 224 embryos were obtained, 89 before vitamin injection and 135 after treatment (P < 0.02), with 36 more embryos (40%) produced. Irrespective of breed, cows responded equally to vitamin injection. A single parenteral injection of vitamins A and E had a significant positive effect on oocyte yield after OPU and in vitro embryo development on Bos indicus cows. We suggest that this effect is probably due to the positive influence of retinoids on oocyte and embryo development.


2014 ◽  
Vol 26 (1) ◽  
pp. 157
Author(s):  
S. Demyda-Peyrás ◽  
M. Hidalgo ◽  
J. Dorado ◽  
M. Moreno-Millan

Chromosomal numerical abnormalities (CNA) were described as a major cause of developmental failures in in vitro-produced (IVP) embryos. It has been described that CNA are influenced by the post-fertilization culture environment of the embryo. Furthermore, it was demonstrated that the use of different culture media affects the CNA rates. The addition of granulosa cells during early embryo development is a well-known procedure to simplify the culture of bovine IVP and cloned embryos. This technique avoids the use of culture environments saturated with N2 (tri-gas chambers). The aim of this study was to determine the effect of the addition of granulosa cells in the chromosomal abnormalities of IVP cattle embryos. Cumulus–oocyte complexes (COC) were matured in TCM-199 medium, supplemented with glutamine, sodium pyruvate, FSH, LH, oestradiol, and gentamicin during 20 h at 38.5°C in a 5% CO2 humid atmosphere. Subsequently, matured oocytes were fertilized in IVF-TALP medium using 1 × 106 spermatozoa mL–1, selected through a Percoll gradient centrifugation. After fertilization, zygotes were divided in 2 groups and cultured in TCM-199 medium for 48 h, with (TCM-GC) or without (TCM) the addition of 1 × 106 granulosa cells. These cells were obtained by centrifuging and washing the follicular fluid remaining from searching dishes and adjusted to the working concentration. After culture, a total of 106 early embryos (72 hpi) were cytogenetically evaluated following our standard laboratory techniques. Embryos showing normal development were individually fixed onto a slide, disaggregated into blastomeres with acetic acid, and stained with Giemsa solution. Chromosomal numerical abnormalities were evaluated by direct observation at 1250× magnification in a brightfield microscope. Percentage of normal diploid embryos (D) and abnormal haploid (H), polyploid (P), or aneuploid (A) embryos were determined. Results were statistically compared between treatments using a Z test for proportions. Results were: D = 81.4%, H = 7.2%, P = 7.2%. and A = 3.6% in TCM and D = 84.3%, H = 3.9%, P = 9.8%, and A = 1.9% in TCM-GC. No significant differences (P > 0.05) were found between culture media in the chromosomal abnormality rates. According to our results, the use of somatic cells in co-culture during embryo development did not influence the appearance of abnormal complements in the produced embryos. This would allow the use of GC as a potential complement to simplify the techniques used in the culture of bovine embryos until Day 3.


2019 ◽  
Vol 25 (4) ◽  
pp. 1032-1036 ◽  
Author(s):  
Francisco Báez ◽  
Álvaro A. Camargo ◽  
Gustavo D.A. Gastal

AbstractThe aims of the present study were to: (i) evaluate the ultrastructural differences in the zona pellucida (ZP) surface between immature and mature bovine oocytes, and (ii) describe a new objective technique to measure the pores in the outer ZP. Intact cumulus–oocyte complexes (COCs) obtained from a local abattoir were immediately fixed (immature group) or submitted to in vitro maturation (IVM) at 38.5 °C for 24 h in a humidified atmosphere of 5% CO2 in air (mature group). Oocytes from both groups were morphologically evaluated via Scanning Electron Microscopy (SEM) and the images were processed in the Fiji/ImageJ software using a new objective methodology through the Trainable Weka Segmentation plugin. The average number of pores in ZP was greater (p < 0.05) in the mature group than the immature group. However, the size and circularity of pores in ZP did not differ (p > 0.05) between groups. In conclusion, it has been shown that the number of pores highlighted the main ultrastructural change in the morphology of the ZP surface of bovine oocytes during the IVM process. We have described an objective method that can be used to evaluate ultrastructural modifications of the ZP surface during oocyte maturation and early embryo development.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1132 ◽  
Author(s):  
Yan-Li Sun ◽  
Shou-Bin Tang ◽  
Wei Shen ◽  
Shen Yin ◽  
Qing-Yuan Sun

After ovulation, mammalian oocytes will undergo a time-dependent process of aging if they are not fertilized. This postovulatory aging (POA) seriously affects the oocyte quality and then impairs the subsequent fertilization and early embryo development, which should be avoided especially in assisted reproductive technology (ART). Resveratrol is an antioxidant substance that can scavenge free radicals and is effective in improving ovary functions. Here, mouse oocytes were used to investigate the effects and mechanisms of resveratrol on POA oocytes in vitro. With 1.0 µM resveratrol treatment during aging process, the rates of fertilization and blastocyst in POA oocytes increased significantly compared with those in the POA group. Resveratrol can reduce the loss of sperm binding sites by stabilizing Juno. Resveratrol can maintain the normal morphology of spindle and mitochondrion distribution and alleviate the levels of ROS and early apoptosis. Additionally, resveratrol can reduce the changes of H3K9me2. Therefore, resveratrol can significantly improve the quality of POA oocytes in vitro to enhance the rates of fertilization and blastocyst, which may be very helpful during the ART process.


1992 ◽  
Vol 9 (2) ◽  
pp. 128-132 ◽  
Author(s):  
N. Mordel ◽  
S. Ohad ◽  
B. Zentner ◽  
J. G. Schenker ◽  
J. Gordon ◽  
...  

Reproduction ◽  
2004 ◽  
Vol 128 (3) ◽  
pp. 281-291 ◽  
Author(s):  
Andrea Jurisicova ◽  
Beth M Acton

Human preimplantation embryo development is prone to high rates of early embryo wastage, particularly under currentin vitroculture conditions. There are many possible underlying causes for embryo demise, including DNA damage, poor embryo metabolism and the effect of suboptimal culture media, all of which could result in an imbalance in gene expression and the failed execution of basic embryonic decisions. In view of the complex interactions involved in embryo development, a thorough understanding of these parameters is essential to improving embryo quality. An increasing body of evidence indicates that cell fate (i.e. survival/differentiation or death) is determined by the outcome of specific intracellular interactions between pro- and anti-apoptotic proteins, many of which are expressed during oocyte and preimplantation embryo development. The recent availability of mutant mice lacking expression of various genes involved in the regulation of cell survival has enabled rapid progress towards identifying those molecules that are functionally important for normal oocyte and preimplantation embryo development. In this review we will discuss the current understanding of the regulation of cell death gene expression during preimplantation embryo development, with a focus on human embryology and a discussion of animal models where appropriate.


Sign in / Sign up

Export Citation Format

Share Document