scholarly journals Genome-wide identification, phylogeny and expression analysis of the PME and PMEI gene families in maize

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Panpan Zhang ◽  
Hao Wang ◽  
Xiner Qin ◽  
Kuan Chen ◽  
Jiuran Zhao ◽  
...  

AbstractPectins, the major components of cell walls in plants, are synthesized and secreted to cell walls as highly methyl-esterified polymers and then demethyl-esterified by pectin methylesterases (PMEs). The PMEs are spatially regulated by pectin methylesterase inhibitors (PMEIs). In this study, 43 and 49 putative PME and PMEI genes were identified in maize, respectively. Gene structure and motif analysis revealed that members in the same paralogous pairs or in the same subgroup generally had common motif compositions and gene structure patterns, which indicates functional similarity between the closely related ZmPME/PMEI genes. Gene ontology annotation analysis showed that most of the ZmPME/PMEI genes are involved in cell wall modification and pectin catabolic process with molecular functions of pectinesterase or pectinesterase inhibitor activities. There are 35 ZmPME/PMEI genes expressed higher in anthers than in other tissues from the NimbleGen maize microarray data, and the semiq-RT-PCR assay revealed most of these ZmPME/PMEIs specially expressed in anthers and pollens, indicating they possibly had role in anther and pollen development. In addition, these ZmPME/PMEI genes were highly expressed in the fertile anthers, while lowly or no expressed in sterile anthers. This further indicated these genes might be involved in the development of anther and pollen.

2021 ◽  
Author(s):  
Guobin Zhang ◽  
Zeyu Zhang ◽  
Shilei Luo ◽  
Xia Li ◽  
Jian Lyu ◽  
...  

Abstract Background: Type 2C protein phosphatase (PP2Cs) is a negative regulator of ABA signaling pathway, which play important roles in stress signal transduction in plants. However, cucumber (Cucumis sativus L.), as an important economic vegetable, has little research on its PP2C genes family. Results: This study conducted a genome-wide investigation of CsPP2C gene family. Through bioinformatics analysis, 56 CsPP2C genes were identified in cucumber. Based on phylogenetic analysis, the PP2C genes of cucumber and Arabidopsis were divided into 13 groups. Gene structure and conserved motif analysis showed that CsPP2C genes in the same group had similar gene structure and conserved domains. Collinearity analysis showed that segmental duplication events played a key role in the expansion of cucumber PP2C genes family. In addition, the expression of CsPP2Cs under different abiotic treatments was analyzed by qRT-PCR. The results showed that CsPP2C family genes showed different expression patterns under ABA, drought, salt and cold treatment, and a significantly responsive gene CsPP2Cs was obtained (CsPP2C3). By predicting the cis-elements in the promoter, we found that all CsPP2C members contained ABA response elements (ABRE) and drought response elements (MYC). Additionally, the expression patterns of CsPP2C genes were specific in different tissues. Conclusions: The results of this study provide a reference for the genome-wide identification of PP2C gene family in other species, and provide a basis for future studies on the function of PP2C gene in cucumber.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9130
Author(s):  
Jing He ◽  
Xiaohong He ◽  
Pingan Chang ◽  
Huaizhong Jiang ◽  
Daping Gong ◽  
...  

Background Teosinte branched1/Cycloidea/proliferating cell factors (TCPs) are plant-specific transcription factors widely involved in leaf development, flowering, shoot branching, the circadian rhythm, hormone signaling, and stress responses. However, the TCP function in Brassica juncea var. tumida, the tumorous stem mustard, has not yet been reported. This study identified and characterized the entire TCP family members in B. juncea var. tumida. Methods We identified 62 BjTCP genes from the B. juncea var. tumida genome and analyzed their phylogenetic relationship, gene structure, protein motifs, chromosome location, and expression profile in different tissues. Results Of the 62 BjTCP genes we identified in B. juncea var. tumida, containing 34 class I and 28 class II subfamily members, 61 were distributed on 18 chromosomes. Gene structure and conserved motif analysis showed that the same clade genes displayed a similar exon/intron gene structure and conserved motifs. Cis-acting element results showed that the same clade genes also had a similar cis-acting element; however, subtle differences implied a different regulatory pathway. The BjTCP18s members were low-expressed in Dayejie strains and the unswelling stage of Yonganxiaoye strains. Treatment with gibberellin (GA) and salicylic acid (SA) showed that GA and SA affect the expression levels of multiple TCP genes. Conclusion We performed the first genome-wide analysis of the TCP gene family of B. juncea var. tumida. Our results have provided valuable information for understanding the classification and functions of TCP genes in B. juncea var. tumida.


2022 ◽  
Author(s):  
Jean Keller ◽  
Camille Puginier ◽  
Cyril Libourel ◽  
Juergen Otte ◽  
Pavel Skaloud ◽  
...  

Mutualistic symbioses, such as lichens formed between fungi and green algae or cyanobacteria, have contributed to major transitions in the evolution of life and are at the center of extant ecosystems. However, our understanding of their evolution and function remains elusive in most cases. Here, we investigated the evolutionary history and the molecular innovations at the origin of lichens in green algae. We de novo sequenced the genomes or transcriptomes of 15 lichen-forming and closely-related non-lichen-forming algae and performed comparative phylogenomics with 22 genomes previously generated. We identified more than 350 functional categories significantly enriched in chlorophyte green algae able to form lichens. Among them, functions such as light perception or resistance to dehydration were shared between lichenizing and other terrestrial algae but lost in non-terrestrial ones, indicating that the ability to live in terrestrial habitats is a prerequisite for lichens to evolve. We detected lichen-specific expansions of glycosyl hydrolase gene families known to remodel cell walls, including the glycosyl hydrolase 8 which was acquired in lichenizing Trebouxiophyceae by horizontal gene transfer from bacteria, concomitantly with the ability to form lichens. Mining genome-wide orthogroups, we found additional evidence supporting at least two independent origins of lichen-forming ability in chlorophyte green algae. We conclude that the lichen-forming ability evolved multiple times in chlorophyte green algae, following a two-step mechanism which involves an ancestral adaptation to terrestrial lifestyle and molecular innovations to modify the partners cell walls.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ruifeng Cui ◽  
Xiaoge Wang ◽  
Waqar Afzal Malik ◽  
Xuke Lu ◽  
Xiugui Chen ◽  
...  

Abstract Background The Raffinose synthetase (RAFS) genes superfamily is critical for the synthesis of raffinose, which accumulates in plant leaves under abiotic stress. However, it remains unclear whether RAFS contributes to resistance to abiotic stress in plants, specifically in the Gossypium species. Results In this study, we identified 74 RAFS genes from G. hirsutum, G. barbadense, G. arboreum and G. raimondii by using a series of bioinformatic methods. Phylogenetic analysis showed that the RAFS gene family in the four Gossypium species could be divided into four major clades; the relatively uniform distribution of the gene number in each species ranged from 12 to 25 based on species ploidy, most likely resulting from an ancient whole-genome polyploidization. Gene motif analysis showed that the RAFS gene structure was relatively conservative. Promoter analysis for cis-regulatory elements showed that some RAFS genes might be regulated by gibberellins and abscisic acid, which might influence their expression levels. Moreover, we further examined the functions of RAFS under cold, heat, salt and drought stress conditions, based on the expression profile and co-expression network of RAFS genes in Gossypium species. Transcriptome analysis suggested that RAFS genes in clade III are highly expressed in organs such as seed, root, cotyledon, ovule and fiber, and under abiotic stress in particular, indicating the involvement of genes belonging to clade III in resistance to abiotic stress. Gene co-expressed network analysis showed that GhRFS2A-GhRFS6A, GhRFS6D, GhRFS7D and GhRFS8A-GhRFS11A were key genes, with high expression levels under salt, drought, cold and heat stress. Conclusion The findings may provide insights into the evolutionary relationships and expression patterns of RAFS genes in Gossypium species and a theoretical basis for the identification of stress resistance materials in cotton.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zihan Cheng ◽  
Xuemei Zhang ◽  
Wenjing Yao ◽  
Kai Zhao ◽  
Lin Liu ◽  
...  

Abstract Background The Late Embryogenesis-Abundant (LEA) gene families, which play significant roles in regulation of tolerance to abiotic stresses, widely exist in higher plants. Poplar is a tree species that has important ecological and economic values. But systematic studies on the gene family have not been reported yet in poplar. Results On the basis of genome-wide search, we identified 88 LEA genes from Populus trichocarpa and renamed them as PtrLEA. The PtrLEA genes have fewer introns, and their promoters contain more cis-regulatory elements related to abiotic stress tolerance. Our results from comparative genomics indicated that the PtrLEA genes are conserved and homologous to related genes in other species, such as Eucalyptus robusta, Solanum lycopersicum and Arabidopsis. Using RNA-Seq data collected from poplar under two conditions (with and without salt treatment), we detected 24, 22 and 19 differentially expressed genes (DEGs) in roots, stems and leaves, respectively. Then we performed spatiotemporal expression analysis of the four up-regulated DEGs shared by the tissues, constructed gene co-expression-based networks, and investigated gene function annotations. Conclusion Lines of evidence indicated that the PtrLEA genes play significant roles in poplar growth and development, as well as in responses to salt stress.


Horticulturae ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 149
Author(s):  
Chao Gong ◽  
Qiangqiang Pang ◽  
Zhiliang Li ◽  
Zhenxing Li ◽  
Riyuan Chen ◽  
...  

Under high temperature stress, a large number of proteins in plant cells will be denatured and inactivated. Meanwhile Hsfs and Hsps will be quickly induced to remove denatured proteins, so as to avoid programmed cell death, thus enhancing the thermotolerance of plants. Here, a comprehensive identification and analysis of the Hsf and Hsp gene families in eggplant under heat stress was performed. A total of 24 Hsf-like genes and 117 Hsp-like genes were identified from the eggplant genome using the interolog from Arabidopsis. The gene structure and motif composition of Hsf and Hsp genes were relatively conserved in each subfamily in eggplant. RNA-seq data and qRT-PCR analysis showed that the expressions of most eggplant Hsf and Hsp genes were increased upon exposure to heat stress, especially in thermotolerant line. The comprehensive analysis indicated that different sets of SmHsps genes were involved downstream of particular SmHsfs genes. These results provided a basis for revealing the roles of SmHsps and SmHsp for thermotolerance in eggplant, which may potentially be useful for understanding the thermotolerance mechanism involving SmHsps and SmHsp in eggplant.


Gene ◽  
2022 ◽  
Vol 807 ◽  
pp. 145930
Author(s):  
Pan Yue ◽  
Han Zhang ◽  
Xinxin Tong ◽  
Ting Peng ◽  
Pan Tang ◽  
...  

Gene ◽  
2020 ◽  
pp. 145349
Author(s):  
An-Pei Zhou ◽  
Yuan-Yuan Zhong ◽  
Si-Qi Li ◽  
Xuan Fei ◽  
Pei-Hua Gan ◽  
...  

2017 ◽  
Vol 142 (4) ◽  
pp. 246-259 ◽  
Author(s):  
Yunqing Zhu ◽  
Wenfang Zeng ◽  
Xiaobei Wang ◽  
Lei Pan ◽  
Liang Niu ◽  
...  

Pectins are synthesized and secreted to the cell wall as highly methyl-esterified polymers and demethyl-esterified by pectin methylesterases (PMEs), which are regulated by pectin methylesterase inhibitors (PMEIs). PMEs and PMEIs are involved in pectin degradation during fruit softening; however, the roles of the PME and PMEI gene families during fruit softening remain unclear. Here, 71 PME and 30 PMEI genes were identified in the peach (Prunus persica) genome and shown to be unevenly distributed on all eight chromosomes. The 71 PME genes comprised 36 Type-1 PMEs and 35 Type-2 PMEs. Transcriptome analysis showed that 11 PME and 15 PMEI genes were expressed during fruit ripening in melting flesh (MF) and stony-hard (SH) peaches. Three PME and five PMEI genes were expressed at higher levels in MF than in SH fruit and exhibited softening-associated expression patterns. Upstream regulatory cis elements of these genes related to hormone response, especially naphthaleneacetic acid and ethylene, were investigated. One PME (Prupe.7G192800) and two PMEIs (Prupe.1G114500 and Prupe.2G279800), and their promoters were identified as potential targets for future studies on the biochemical metabolism and regulation of fruit ripening. The comprehensive data generated in this study will improve our understanding of the PME and PMEI gene families in peach. However, further detailed investigation is necessary to elucidate the biochemical function and regulation mechanism of the PME and PMEI genes during peach fruit ripening.


Sign in / Sign up

Export Citation Format

Share Document