scholarly journals Two potential equilibrium states in long-term soil respiration activity of dry grasslands are maintained by local topographic features

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Szilvia Fóti ◽  
János Balogh ◽  
Bernadett Gecse ◽  
Krisztina Pintér ◽  
Marianna Papp ◽  
...  
Soil Research ◽  
2009 ◽  
Vol 47 (2) ◽  
pp. 198 ◽  
Author(s):  
Shutao Chen ◽  
Yao Huang

Studies on the CO2 and N2O emission patterns of agricultural soils under different ploughing practices may provide an insight into the potential and magnitude of CO2 and N2O mitigation in highly managed farmland soils. In this study, field measurements of soil respiration and N2O flux with different ploughing depths were performed in the 2003–04 wheat (Triticum aestivum L.), 2004 maize (Zea mays L.), and 2004–05 wheat seasons. Soil temperature and moisture were simultaneously measured. Results showed that, in each cropping season, the seasonal variation in soil respiration developed with a similar pattern for different treatments, which was primarily regulated by soil temperature. This work demonstrates that ploughing depth can influence long-term loss of carbon from soil, but this was contingent on preceding cropping types. Given the same preceding cropping practice, no significant difference in N2O emission was found among different ploughing depths in each cropping season.


2018 ◽  
Vol 95 (1) ◽  
Author(s):  
Michael McTee ◽  
Lorinda Bullington ◽  
Matthias C Rillig ◽  
Philip W Ramsey

ABSTRACTMany experiments that measure the response of microbial communities to heavy metals increase metal concentrations abruptly in the soil. However, it is unclear whether abrupt additions mimic the gradual and often long-term accumulation of these metals in the environment where microbial populations may adapt. In a greenhouse experiment that lasted 26 months, we tested whether bacterial communities and soil respiration differed between soils that received an abrupt or a gradual addition of copper or no copper at all. Bacterial richness and other diversity indices were consistently lower in the abrupt treatment compared to the ambient treatment that received no copper. The abrupt addition of copper yielded different initial bacterial communities than the gradual addition; however, these communities appeared to converge once copper concentrations were approximately equal. Soil respiration in the abrupt treatment was initially suppressed but recovered after four months. Afterwards, respiration in both the gradual and abrupt treatments wavered between being below or equal to the ambient treatment. Overall, our study indicates that gradual and abrupt additions of copper can yield similar bacterial communities and respiration, but these responses may drastically vary until copper concentrations are equal.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 151
Author(s):  
Pramod Jha ◽  
Kuntal M. Hati ◽  
Ram C. Dalal ◽  
Yash P. Dang ◽  
Peter M. Kopittke ◽  
...  

In subtropical regions, we have an incomplete understanding of how long-term tillage, stubble, and nitrogen (N) fertilizer management affects soil biological functioning. We examined a subtropical site managed for 50 years using varying tillage (conventional till (CT) and no-till (NT)), stubble management (stubble burning (SB) and stubble retention (SR)), and N fertilization (0 (N0), 30 (N30), and 90 (N90) kg ha−1 y−1) to assess their impact on soil microbial respiration, easily extractable glomalin-related soil protein (EEGRSP), and N mineralization. A significant three-way tillage × stubble × N fertilizer interaction was observed for soil respiration, with NT+SB+N0 treatments generally releasing the highest amounts of CO2 over the incubation period (1135 mg/kg), and NT+SR+N0 treatments releasing the lowest (528 mg/kg). In contrast, a significant stubble × N interaction was observed for both EEGRSP and N mineralization, with the highest concentrations of both EEGRSP (2.66 ± 0.86 g kg−1) and N mineralization (30.7 mg/kg) observed in SR+N90 treatments. Furthermore, N mineralization was also positively correlated with EEGRSP (R2 = 0.76, p < 0.001), indicating that EEGRSP can potentially be used as an index of soil N availability. Overall, this study has shown that SR and N fertilization have a positive impact on soil biological functioning.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Huimei Wang ◽  
Wei Liu ◽  
Wenjie Wang ◽  
Yuangang Zu

Thinning management is used to improve timber production, but only a few data are available on how it influences ecosystem C sink capacity. This study aims to clarify the effects of thinning on C sinks of larch plantations, the most widespread forests in Northeastern China. Both C influx from biomass production and C efflux from each soil respiration component and its temperature sensitivity were determined for scaling-up ecosystem C sink estimation: microbial composition is measured for clarifying mechanism for respiratory changes from thinning treatment. Thinning management induced 6.23 mol C m−2 yr−1increase in biomass C, while the decrease in heterotrophic respiration (Rh) at the thinned sites (0.9 mol C m−2 yr−1) has enhanced 14% of this biomass C increase. This decrease inRhwas a sum of the 42% decrease (4.1 mol C m−2 yr−1) in litter respiration and 3.2 mol C m−2 yr−1more CO2efflux from mineral soil in thinned sites compared with unthinned control. Increases in temperature, temperature sensitivity, alteration of litters, and microbial composition may be responsible for the contrary changes inRhfrom mineral soil and litter respiration, respectively. These findings manifested that thinning management of larch plantations could enhance biomass accumulation and decrease respiratory efflux from soil, which resulted in the effectiveness improvement in sequestrating C in forest ecosystems.


2018 ◽  
Vol 152 ◽  
pp. 37-44 ◽  
Author(s):  
Lin Wei ◽  
Jishuai Su ◽  
Guanghua Jing ◽  
Jie Zhao ◽  
Jian Liu ◽  
...  

2015 ◽  
Vol 39 ◽  
pp. 633-651 ◽  
Author(s):  
Dalia FEIZIENE ◽  
Dalia JANUSAUSKAITE ◽  
Virginijus FEIZA ◽  
Agne PUTRAMENTAITE ◽  
Ausra SINKEVICIENE ◽  
...  

2006 ◽  
Vol 77 (1) ◽  
pp. 91-116 ◽  
Author(s):  
E. S. Bernhardt ◽  
J. J. Barber ◽  
J. S. Pippen ◽  
L. Taneva ◽  
J. A. Andrews ◽  
...  

2005 ◽  
Vol 71 (12) ◽  
pp. 8335-8343 ◽  
Author(s):  
Karin Enwall ◽  
Laurent Philippot ◽  
Sara Hallin

ABSTRACT The objective of this study was to explore the long-term effects of different organic and inorganic fertilizers on activity and composition of the denitrifying and total bacterial communities in arable soil. Soil from the following six treatments was analyzed in an experimental field site established in 1956: cattle manure, sewage sludge, Ca(NO3)2, (NH4)2SO4, and unfertilized and unfertilized bare fallow. All plots but the fallow were planted with corn. The activity was measured in terms of potential denitrification rate and basal soil respiration. The nosZ and narG genes were used as functional markers of the denitrifying community, and the composition was analyzed using denaturing gradient gel electrophoresis of nosZ and restriction fragment length polymorphism of narG, together with cloning and sequencing. A fingerprint of the total bacterial community was assessed by ribosomal intergenic spacer region analysis (RISA). The potential denitrification rates were higher in plots treated with organic fertilizer than in those with only mineral fertilizer. The basal soil respiration rates were positively correlated to soil carbon content, and the highest rates were found in the plots with the addition of sewage sludge. Fingerprints of the nosZ and narG genes, as well as the RISA, showed significant differences in the corresponding communities in the plots treated with (NH4)2SO4 and sewage sludge, which exhibited the lowest pH. In contrast, similar patterns were observed among the other four treatments, unfertilized plots with and without crops and the plots treated with Ca(NO3)2 or with manure. This study shows that the addition of different fertilizers affects both the activity and the composition of the denitrifying communities in arable soil on a long-term basis. However, the treatments in which the denitrifying and bacterial community composition differed the most did not correspond to treatments with the most different activities, showing that potential activity was uncoupled to community composition.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
S. F. Smith ◽  
K. R. Brye

Ensuring the sustainability of cultivated soils is an ever-increasing priority for producers in the Lower Mississippi River Valley (LMRV). As groundwater sources become depleted and environmental regulations become more strict, producers will look to alternative management practices that will ensure the sustainability and cost-effectiveness of their production systems. This study was conducted to assess the long-term (>7 years) effects of irrigation (i.e., irrigated and dryland production) and tillage (conventional and no-tillage) on estimated carbon dioxide (CO2) emissions from soil respiration during two soybean (Glycine maxL.) growing seasons from a wheat- (Triticum aestivumL.-) soybean, double-cropped production system in the LMRV region of eastern Arkansas. Soil surface CO2fluxes were measured approximately every two weeks during two soybean growing seasons. Estimated season-long CO2emissions were unaffected by irrigation in 2011 (P>0.05); however, during the unusually dry 2012 growing season, season-long CO2emissions were 87.6% greater (P=0.044) under irrigated (21.9 Mg CO2ha−1) than under dryland management (11.7 Mg CO2ha−1). Contrary to what was expected, there was no interactive effect of irrigation and tillage on estimated season-long CO2emissions. Understanding how long-term agricultural management practices affect soil respiration can help improve policies for soil and environmental sustainability.


Sign in / Sign up

Export Citation Format

Share Document