scholarly journals Safety and functional enrichment of gut microbiome in healthy subjects consuming a multi-strain fermented milk product: a randomised controlled trial

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Anne-Sophie Alvarez ◽  
Julien Tap ◽  
Isabelle Chambaud ◽  
Stéphanie Cools-Portier ◽  
Laurent Quinquis ◽  
...  

Abstract Many clinical studies have evaluated the effect of probiotics, but only a few have assessed their dose effects on gut microbiota and host. We conducted a randomized, double-blind, controlled intervention clinical trial to assess the safety (primary endpoint) of and gut microbiota response (secondary endpoint) to the daily ingestion for 4 weeks of two doses (1 or 3 bottles/day) of a fermented milk product (Test) in 96 healthy adults. The Test product is a multi-strain fermented milk product, combining yogurt strains and probiotic candidate strains Lactobacillus paracasei subsp. paracasei CNCM I-1518 and CNCM I-3689 and Lactobacillus rhamnosus CNCM I-3690. We assessed the safety of the Test product on the following parameters: adverse events, vital signs, hematological and metabolic profile, hepatic, kidney or thyroid function, inflammatory markers, bowel habits and digestive symptoms. We explored the longitudinal gut microbiota response to product consumption and dose, by 16S rRNA gene sequencing and functional contribution by shotgun metagenomics. Safety results did not show any significant difference between the Test and Control products whatever the parameters assessed, at the two doses ingested daily over a 4-week-period. Probiotic candidate strains were detected only during consumption period, and at a significantly higher level for the three strains in subjects who consumed 3 products bottles/day. The global structure of the gut microbiota as assessed by alpha and beta-diversity, was not altered by consumption of the product for four weeks. A zero-inflated beta regression model with random effects (ZIBR) identified a few bacterial genera with differential responses to test product consumption dose compared to control. Shotgun metagenomics analysis revealed a functional contribution to the gut microbiome of probiotic candidates.

Author(s):  
Anneloes E. Groenenboom ◽  
John Shindano ◽  
Nachimuka Cheepa ◽  
Eddy J. Smid ◽  
Sijmen E. Schoustra

AbstractMabisi is a fermented milk product, traditionally produced in a calabash by uncontrolled fermentation. Due to high costs and a reduced availability of calabashes, nowadays plastic containers are also used for Mabisi production. However, the effect of this change in production practice on the properties of the product has not been documented. Therefore, we aimed at determining the effect of fermentation vessels and types of back-slopping on acidification and microbial communities during fermentation. A series of fifteen experiments using two types of fermentation vessels (plastic buckets and calabashes) in combination with different types of back-slopping (no back-slopping, passive back-slopping, and active back-slopping) were set up at a field site in rural Zambia. In each of the fifteen fermentations we analysed acidification rate of traditional Mabisi fermentation and bacterial diversity over time. No significant difference was found in terms of microbial diversity during and at the end of fermentation between fermentations performed in buckets or previously used calabashes. Bacterial communities in general decreased in diversity over time, where the drop in pH correlated with a decrease in Shannon Index. In case of active back-slopping, the pH drop started right after inoculation while in the no back-slopping and passive back-slopping fermentations, there was a clear lag phase before acidification started. All experimental series resulted in a microbial community dominated by Lactococcus lactis and a Shannon Index, as a measure for diversity, between 0.6 and 2.0. The use of plastic buckets for Mabisi fermentation can be a valuable alternative to the use of calabashes as this study showed no biological and physico-chemical differences between Mabisi resulting from both fermentation vessels, although the reason for perceived differences should be further investigated.


2016 ◽  
Vol 45 (2) ◽  
pp. 66-72
Author(s):  
MN Islam ◽  
S Arefin ◽  
MAH Sarker ◽  
S Akhter ◽  
R Habib

Dahi is a popular fermented milk product with higher nutritional value and significant therapeutic properties. The objective of the present study was to use sodium alginate as stabilizer to monitor the feasibility of using for improving structural quality of sweet dahi. Dahi were prepared using 0.4%, 0.6%, 0.8% and 1% sodium alginate. One control sample was made with no stabilizer to judge the other treated samples. All the samples were analyzed for organoleptic and chemical qualities .Significant difference was found in case of smell & taste score (p<0.05), body & consistency (p<0.01), color (p<0.01). Highest (p<0.05) smell and taste score was found at 0.6% sodium alginate treated dahi. In case of body & consistency 0.6% sodium alginate showed better results.  In case of color, 0.6% level of sodium alginate (p<0.01) showed nearly similar result as dahi with no sodium alginate. Significant (p<0.01) differences were found among the treatments in case of composition of dahi samples, except for the fat content, which showed insignificant (p>0.05) difference. Total solids, ash and protein content of dahi samples were increased after addition of sodium alginate. From the above analysis 0.6% sodium alginate was found to be better and it can be concluded that sodium alginate can be used as stabilizer to improve the structural quality of dahi.Bang. J. Anim. Sci. 2016. 45 (2): 66-72


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Samiullah Khan ◽  
Kapil K. Chousalkar

Abstract Background The chicken gut microbiota passes through different stages of maturation; therefore, strengthening it with well characterised probiotics increases its resilience required for optimum gut health and wellbeing. However, there is limited information on the interaction of Bacillus based probiotics with gut microbial community members in cage free laying chickens both in rearing and production phases of life. In the current study, we investigated the changes in the gut microbiome of free range hens in the field after Bacillus based probiotic supplementation. Results Overall, at phylum level, probiotic supplementation increased the populations of Bacteroidetes and Proteobacteria mainly at the expense of Firmicutes. The population of Bacteroidetes significantly increased during the production as compared to the rearing phase, and its higher population in the probiotic-supplemented chickens reflects the positive role of Bacillus based probiotic in gut health. Core differences in the beta diversity suggest that probiotic supplementation decreased microbial compositionality. The non-significant difference in alpha diversity between the probiotic and control chickens showed that the composition of community structure did not change. No Salmonella spp. were isolated from the probiotic supplemented birds. Egg internal quality was significantly higher, while egg production and body weight did not differ. Functional prediction data showed that probiotic supplementation enriched metabolic pathways, such as vitamin B6 metabolism, phenylpropanoid biosynthesis, monobactam biosynthesis, RNA degradation, retinol metabolism, pantothenate and CoA biosynthesis, phosphonate and phosphinate metabolism, AMPK signaling pathway, cationic antimicrobial peptide (CAMP) resistance and tyrosine metabolism. Conclusions Overall, age was the main factor affecting the composition and diversity of gut microbiota, where probiotic supplementation improved the abundance of many useful candidates in the gut microbial communities. The generated baseline data in the current study highlights the importance of the continuous use of Bacillus based probiotic for optimum gut health and production.


PLoS ONE ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. e0214273 ◽  
Author(s):  
Boris Le Nevé ◽  
Muriel Derrien ◽  
Julien Tap ◽  
Rémi Brazeilles ◽  
Stéphanie Cools Portier ◽  
...  

2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Patrick Veiga ◽  
Nicolas Pons ◽  
Anurag Agrawal ◽  
Raish Oozeer ◽  
Denis Guyonnet ◽  
...  

2020 ◽  
pp. 48-50
Author(s):  
I.V. Rozhkova ◽  
◽  
A.V. Begunova ◽  
T.I. Shirshova ◽  
Yu. I. Krysanova ◽  
...  

2018 ◽  
pp. 54-55
Author(s):  
A.V. Begunova ◽  
◽  
I.V. Rozhkova ◽  
T.A. Raskoshnaya ◽  
T.I. Shyrshova ◽  
...  

2021 ◽  
Author(s):  
Yueqiong Ni ◽  
Zoltan Lohinai ◽  
Yoshitaro Heshiki ◽  
Balazs Dome ◽  
Judit Moldvay ◽  
...  

AbstractCachexia is associated with decreased survival in cancer patients and has a prevalence of up to 80%. The etiology of cachexia is poorly understood, and limited treatment options exist. Here, we investigated the role of the human gut microbiome in cachexia by integrating shotgun metagenomics and plasma metabolomics of 31 lung cancer patients. The cachexia group showed significant differences in the gut microbial composition, functional pathways of the metagenome, and the related plasma metabolites compared to non-cachectic patients. Branched-chain amino acids (BCAAs), methylhistamine, and vitamins were significantly depleted in the plasma of cachexia patients, which was also reflected in the depletion of relevant gut microbiota functional pathways. The enrichment of BCAAs and 3-oxocholic acid in non-cachectic patients were positively correlated with gut microbial species Prevotella copri and Lactobacillus gasseri, respectively. Furthermore, the gut microbiota capacity for lipopolysaccharides biosynthesis was significantly enriched in cachectic patients. The involvement of the gut microbiome in cachexia was further observed in a high-performance machine learning model using solely gut microbial features. Our study demonstrates the links between cachectic host metabolism and specific gut microbial species and functions in a clinical setting, suggesting that the gut microbiota could have an influence on cachexia with possible therapeutic applications.


Sign in / Sign up

Export Citation Format

Share Document