REDUCTION OF SYMPTOMS AND BREATH H2 PRODUCTION IN A SUBGROUP OF PATIENTS WITH IRRITABLE BOWEL SYNDROME CHARACTERIZED BY DISTINCT GUT MICROBIOTA ACTIVITY: EFFECT OF A FERMENTED MILK PRODUCT CONTAINING BIFIDOBACTERIUM LACTIS CNCM I-2494

Author(s):  
Boris Le Nevé
PLoS ONE ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. e0214273 ◽  
Author(s):  
Boris Le Nevé ◽  
Muriel Derrien ◽  
Julien Tap ◽  
Rémi Brazeilles ◽  
Stéphanie Cools Portier ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Anne-Sophie Alvarez ◽  
Julien Tap ◽  
Isabelle Chambaud ◽  
Stéphanie Cools-Portier ◽  
Laurent Quinquis ◽  
...  

Abstract Many clinical studies have evaluated the effect of probiotics, but only a few have assessed their dose effects on gut microbiota and host. We conducted a randomized, double-blind, controlled intervention clinical trial to assess the safety (primary endpoint) of and gut microbiota response (secondary endpoint) to the daily ingestion for 4 weeks of two doses (1 or 3 bottles/day) of a fermented milk product (Test) in 96 healthy adults. The Test product is a multi-strain fermented milk product, combining yogurt strains and probiotic candidate strains Lactobacillus paracasei subsp. paracasei CNCM I-1518 and CNCM I-3689 and Lactobacillus rhamnosus CNCM I-3690. We assessed the safety of the Test product on the following parameters: adverse events, vital signs, hematological and metabolic profile, hepatic, kidney or thyroid function, inflammatory markers, bowel habits and digestive symptoms. We explored the longitudinal gut microbiota response to product consumption and dose, by 16S rRNA gene sequencing and functional contribution by shotgun metagenomics. Safety results did not show any significant difference between the Test and Control products whatever the parameters assessed, at the two doses ingested daily over a 4-week-period. Probiotic candidate strains were detected only during consumption period, and at a significantly higher level for the three strains in subjects who consumed 3 products bottles/day. The global structure of the gut microbiota as assessed by alpha and beta-diversity, was not altered by consumption of the product for four weeks. A zero-inflated beta regression model with random effects (ZIBR) identified a few bacterial genera with differential responses to test product consumption dose compared to control. Shotgun metagenomics analysis revealed a functional contribution to the gut microbiome of probiotic candidates.


2005 ◽  
Vol 68 (6) ◽  
pp. 1246-1252 ◽  
Author(s):  
CRISTINA MARTÍNEZ-VILLALUENGA ◽  
JUANA FRÍAS ◽  
CONCEPCIÓN VIDAL-VALVERDE ◽  
ROSARIO GÓMEZ

The raffinose family of oligosaccharides (RFOs) isolated from lupin seeds (Lupinus albus var. Multolupa) was evaluated for bifidogenic effects during the manufacture of probiotic fermented milk. A mixed starter inoculum was composed of Bifidobacterium lactis Bb-12 and Lactobacillus acidophilus (1:1). Lupins are a rich source of RFOs that can be used as functional food ingredients. The addition of RFOs to milk increased B. lactis Bb-12 and L. acidophilus populations at the final fermentation time compared with controls. Final fermentation products are positively affected by addition of RFOs, and time of fermentation was reduced from 12 to 10 h. When RFOs were added to milk, they were preferentially used as a carbon source (57.7%) compared with lactose (23.7%) at the end of fermentation. These results suggest that the eventual choice of B. lactis Bb-12 and L. acidophilus in a mixed culture at a 1:1 ratio and addition of RFOs to produce a fermented milk product would have the advantages of rapid growth and acidification rate and would likely increase the probiotic effect of the final functional product.


2020 ◽  
pp. 48-50
Author(s):  
I.V. Rozhkova ◽  
◽  
A.V. Begunova ◽  
T.I. Shirshova ◽  
Yu. I. Krysanova ◽  
...  

2018 ◽  
pp. 54-55
Author(s):  
A.V. Begunova ◽  
◽  
I.V. Rozhkova ◽  
T.A. Raskoshnaya ◽  
T.I. Shyrshova ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 35
Author(s):  
Zahra A. Barandouzi ◽  
Joochul Lee ◽  
Kendra Maas ◽  
Angela R. Starkweather ◽  
Xiaomei S. Cong

The interplay between diet and gut microbiota has gained interest as a potential contributor in pathophysiology of irritable bowel syndrome (IBS). The purpose of this study was to compare food components and gut microbiota patterns between IBS patients and healthy controls (HC) as well as to explore the associations of food components and microbiota profiles. A cross-sectional study was conducted with 80 young adults with IBS and 21 HC recruited. The food frequency questionnaire was used to measure food components. Fecal samples were collected and profiled by 16S rRNA Illumina sequencing. Food components were similar in both IBS and HC groups, except in caffeine consumption. Higher alpha diversity indices and altered gut microbiota were observed in IBS compared to the HC. A negative correlation existed between total observed species and caffeine intake in the HC, and a positive correlation between alpha diversity indices and dietary fiber in the IBS group. Higher alpha diversity and gut microbiota alteration were found in IBS people who consumed caffeine more than 400 mg/d. Moreover, high microbial diversity and alteration of gut microbiota composition in IBS people with high caffeine consumption may be a clue toward the effects of caffeine on the gut microbiome pattern, which warrants further study.


Sign in / Sign up

Export Citation Format

Share Document