scholarly journals Changes in the role of Pacific decadal oscillation on sea ice extent variability across the mid-1990s

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hyerim Kim ◽  
Sang-Wook Yeh ◽  
Soon-Il An ◽  
Se-Yong Song

Abstract Characteristics of sea ice extent (SIE) have been rapidly changing in the Pacific Arctic sector (PAS) in recent years. The SIE variability in PAS during the late spring and early summer (i.e., April–May–June, AMJ) plays a key role in determining the SIE during the following fall when SIE is at a minimum. We find that the Pacific Decadal Oscillation (PDO), which is the most dominant variability of sea surface temperature (SST) on the low-frequency timescales, differently influences the SIE in PAS during AMJ before and after the mid-1990s. While a positive phase of PDO during the previous winter acts to increases SIE during AMJ before the mid-1990s, it acts to decrease SIE during AMJ after the mid-1990s. Further analysis indicates that atmospheric circulation associated with PDO differently influences the variability of SIE in the PAS during AMJ by modulating poleward moisture transport across the Alaska or the Far East Asia peninsula. This results in the change in the relationship of PDO and SIE in the PAS before and after the mid-1990s.

2020 ◽  
Vol 61 (82) ◽  
pp. 171-180
Author(s):  
Clare Eayrs ◽  
Daiane Faller ◽  
David M. Holland

AbstractThe yearly paired process of slow growth and rapid melt of some 15 million square kilometers of Antarctic sea ice takes place with a regular asymmetry; the process has been linked to the relationship of the position of the ice edge with the band of low pressure that circles the continent between 60° and 70°S. In autumn, winds to the north of the low-pressure band slow the advancing ice edge. In summer, Ekman divergence created by opposing winds on either side of the low-pressure band opens up warm water regions that rapidly melt sea ice. We use the 40 ensemble members from the CESM-LENS historical run (1920–2005) to examine the relationship between the asymmetry in the annual cycle and the position and intensity of the low-pressure band. CESM-LENS reproduces the magnitude of the annual cycle of Antarctic sea ice extent with a short lag (2 weeks). Melt rate is the characteristic of the annual cycle that varies the most. Our results provide evidence that lower pressure leads to increased melt rates, which supports the importance of the role of divergence in increasing the melt rate of Antarctic sea ice. The role of winds during the growing season remains unquantified.


2021 ◽  
Author(s):  
Sem Vijverberg ◽  
Dim Coumou

<p>Heatwaves can have devastating impact on society and reliable early warnings at several weeks lead time are needed. Heatwaves are often associated with quasi-stationary Rossby waves, which interact with sea surface temperature (SST). Previous studies showed that north-Pacific SST can provide long-lead predictability for eastern U.S. temperature, moderated by an atmospheric Rossby wave. The exact mechanisms, however, are not well understood. Here we analyze Rossby waves associated with heatwaves in western and eastern US. Causal inference analyses reveal that both waves are characterized by positive ocean-atmosphere feedbacks at synoptic timescales, amplifying the waves. However, this positive feedback on short timescales is not the causal mechanism that leads to a long-lead SST signal. Only the eastern US shows a long-lead causal link from SSTs to the Rossby wave. We show that the long-lead SST signal derives from low-frequency PDO variability, providing the source of eastern US temperature predictability. We use this improved physical understanding to identify more reliable long-lead predictions. When, at the onset of summer, the Pacific is in a pronounced PDO phase, the SST signal is expected to persist throughout summer. These summers are characterized by a stronger ocean-boundary forcing, thereby more than doubling the eastern US temperature forecast skill, providing a temporary window of enhanced predictability.</p>


1984 ◽  
Vol 57 (6) ◽  
pp. 1742-1748 ◽  
Author(s):  
T. R. Bai ◽  
B. J. Rabinovitch ◽  
R. L. Pardy

Because of its potential relevance to heavy exercise we studied the ventilatory muscle function of five normal subjects before, during, and after shortterm near-maximal voluntary normocapnic hyperpnea. Measurements of pleural and abdominal pressures and diaphragm electromyogram (EMG) during hyperpnea and of maximum respiratory pressures before and after hyperpnea were made at four levels of ventilation: 76, 79, and 86% maximal voluntary ventilation (MVV) and at MVV. Measurements of pleural and abdominal pressures and diaphragm electromyogram (EMG) during hyperpnea and of maximum respiratory pressures before and after hyperpnea were made. The pressure-stimulation frequency relationship of the diaphragm obtained by unilateral transcutaneous phrenic nerve stimulation was studied in two subjects before and after hyperpnea. Decreases in maximal inspiratory (PImax) and transdiaphragmatic (Pdimax) strength were recorded posthyperpnea at 76 and 79% MVV. Decreases in the pressure-frequency curves of the diaphragm and the ratio of high-to-low frequency power of the diaphragm EMG occurred in association with decreases in Pdimax. Analysis of the pressure-time product (P X dt) for the inspiratory and expiratory muscles individually indicated the increasing contribution of expiratory muscle force to the attainment of higher levels of ventilation. Demonstrable ventilatory muscle fatigue may limit endurance at high levels of ventilation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tsubasa Kodaira ◽  
Takuji Waseda ◽  
Takehiko Nose ◽  
Jun Inoue

AbstractArctic sea ice is rapidly decreasing during the recent period of global warming. One of the significant factors of the Arctic sea ice loss is oceanic heat transport from lower latitudes. For months of sea ice formation, the variations in the sea surface temperature over the Pacific Arctic region were highly correlated with the Pacific Decadal Oscillation (PDO). However, the seasonal sea surface temperatures recorded their highest values in autumn 2018 when the PDO index was neutral. It is shown that the anomalous warm seawater was a rapid ocean response to the southerly winds associated with episodic atmospheric blocking over the Bering Sea in September 2018. This warm seawater was directly observed by the R/V Mirai Arctic Expedition in November 2018 to significantly delay the southward sea ice advance. If the atmospheric blocking forms during the PDO positive phase in the future, the annual maximum Arctic sea ice extent could be dramatically reduced.


2021 ◽  
Vol 12 ◽  
pp. 350
Author(s):  
Midori Miyagi ◽  
Hiroshi Takahashi ◽  
Hideki Sekiya ◽  
Satoru Ebihara

Background: Dysphagia is one of the most serious complications of occipitocervical fusion (OCF). The previous studies have shown that postoperative cervical alignment, documented with occipito (O)-C2 angles, C2-C6 angles, and pharyngeal inlet angles (PIA), impacted the incidence of postoperative dysphagia in patients undergoing OCF. Here, we investigated the relationship of preoperative versus postoperative cervical alignment on the incidence of postoperative dysphagia after OCF. Methods: We retrospectively reviewed the clinical data/medical charts for 22 patients following OCF (2006– 2019). The O-C2 angles, C2-C6 angles, PIA, and narrowest pharyngeal airway spaces (nPAS) were assessed using plain lateral radiographs of the cervical spine before and after the surgery. The severity of dysphagia was assessed with the functional oral intake scale (FOIS) levels as documented in medical charts; based on this, patients were classified into the nondysphagia (FOIS: 7) versus dysphagia (FOIS: 1–6) groups. Results: Seven patients (35%) experienced dysphagia after OCF surgery. Preoperative PIA and nPAS were smaller in the dysphagia group. Spearman rank correlation showed a positive correlation between preoperative PIA and FOIS and between preoperative nPAS and FOIS. Conclusion: This study suggests that preoperative cervical alignment may best predict the incidence of postoperative dysphagia after OCF.


2021 ◽  
Author(s):  
Jin-Sil Hong ◽  
Sang-Wook Yeh ◽  
Young-Min Yang ◽  
Young-Kwon Lim ◽  
Kyu-Myong Kim

Abstract While it is known that the Pacific Decadal Oscillation (PDO) leads the Indian Ocean Basin Mode (IOBM) with the same phase via the atmospheric bridge, we found that the relationship of PDO-IOBM during boreal winter is not stationary. Here, we investigated the PDO-IOBM relationship changes on low-frequency timescales by analyzing the observations, a long-term simulation of climate model with its large ensembles as well as the pacemaker experiments. A long-term simulation of climate model with its large ensemble simulations indicated that the non-stationary relationship of PDO-IOBM is intrinsic in a climate system and it could be at least partly due to internal climate variability. In details, we compared the PDO structures during the entire period with those during the period when the PDO-IOBM relationship was weak (i.e., 1976-2006). We found that the structures of sea surface temperature (SST) as well as its associated tropical Pacific convective forcing during the negative phase of PDO for 1976-2006 are far away from the typical structures of the negative PDO phase during the entire period, which were responsible for the weakening relationship of the PDO-IOBM in the observation. The results of the two pacemaker experiments support that a non-stationary relationship of PDO-IOBM is primarily due to the SST forcing in the Pacific.


2015 ◽  
Vol 112 (15) ◽  
pp. 4570-4575 ◽  
Author(s):  
Rong Zhang

Satellite observations reveal a substantial decline in September Arctic sea ice extent since 1979, which has played a leading role in the observed recent Arctic surface warming and has often been attributed, in large part, to the increase in greenhouse gases. However, the most rapid decline occurred during the recent global warming hiatus period. Previous studies are often focused on a single mechanism for changes and variations of summer Arctic sea ice extent, and many are based on short observational records. The key players for summer Arctic sea ice extent variability at multidecadal/centennial time scales and their contributions to the observed summer Arctic sea ice decline are not well understood. Here a multiple regression model is developed for the first time, to the author’s knowledge, to provide a framework to quantify the contributions of three key predictors (Atlantic/Pacific heat transport into the Arctic, and Arctic Dipole) to the internal low-frequency variability of Summer Arctic sea ice extent, using a 3,600-y-long control climate model simulation. The results suggest that changes in these key predictors could have contributed substantially to the observed summer Arctic sea ice decline. If the ocean heat transport into the Arctic were to weaken in the near future due to internal variability, there might be a hiatus in the decline of September Arctic sea ice. The modeling results also suggest that at multidecadal/centennial time scales, variations in the atmosphere heat transport across the Arctic Circle are forced by anticorrelated variations in the Atlantic heat transport into the Arctic.


2019 ◽  
Vol 10 (1) ◽  
pp. 121-133 ◽  
Author(s):  
Luis Gimeno-Sotelo ◽  
Raquel Nieto ◽  
Marta Vázquez ◽  
Luis Gimeno

Abstract. By considering the moisture transport for precipitation (MTP) for a target region to be the moisture that arrives in this region from its major moisture sources and which then results in precipitation in that region, we explore (i) whether the MTP from the main moisture sources for the Arctic region is linked with inter-annual fluctuations in the extent of Arctic sea ice superimposed on its decline and (ii) the role of extreme MTP events in the inter-daily change in the Arctic sea ice extent (SIE) when extreme MTP simultaneously arrives from the four main moisture regions that supply it. The results suggest (1) that ice melting at the scale of inter-annual fluctuations against the trend is favoured by an increase in moisture transport in summer, autumn, and winter and a decrease in spring and, (2) on a daily basis, extreme humidity transport increases the formation of ice in winter and decreases it in spring, summer, and autumn; in these three seasons extreme humidity transport therefore contributes to Arctic sea ice melting. These patterns differ sharply from that linked to the decline on a long-range scale, especially in summer when the opposite trend applies, as ice melt is favoured by a decrease in moisture transport for this season at this scale.


Sign in / Sign up

Export Citation Format

Share Document