scholarly journals The potential roles of NAD(P)H:quinone oxidoreductase 1 in the development of diabetic nephropathy and actin polymerization

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sung-Je Moon ◽  
Jin Young Jeong ◽  
Jae-Hoon Kim ◽  
Dong-Hee Choi ◽  
Hyunsu Choi ◽  
...  

Abstract Diabetic nephropathy (DN) is a major complication of diabetes mellitus. NAD(P)H:quinone oxidoreductase 1 (NQO1) is an antioxidant enzyme that has been involved in the progression of several kidney injuries. However, the roles of NQO1 in DN are still unclear. We investigated the effects of NQO1 deficiency in streptozotocin (STZ)-induced DN mice. NQO1 was upregulated in the glomerulus and podocytes under hyperglycemic conditions. NQO1 knockout (NKO) mice showed more severe changes in blood glucose and body weight than WT mice after STZ treatment. Furthermore, STZ-mediated pathological parameters including glomerular injury, blood urea nitrogen levels, and foot process width were more severe in NKO mice than WT mice. Importantly, urine albumin-to-creatinine ratio (ACR) was higher in healthy, non-treated NKO mice than WT mice. ACR response to STZ or LPS was dramatically increased in the urine of NKO mice compared to vehicle controls, while it maintained a normal range following treatment of WT mice. More importantly, we found that NQO1 can stimulate actin polymerization in an in vitro biochemical assay without directly the accumulation on F-actin. In summary, NQO1 has an important role against the development of DN pathogenesis and is a novel contributor in actin reorganization via stimulating actin polymerization.

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
SAYAKA SUGIOKA ◽  
Yukiko Kato ◽  
Akira Ishii ◽  
Keita Mori ◽  
Keisuke Osaki ◽  
...  

Abstract Background and Aims Previously, we demonstrated that uninephrectomized aldosterone-infused, high salt-fed podocyte-specific guanylyl cyclase-A (natriuretic peptide receptor 1) conditional KO (pod-GC-A cKO) mice exhibited glomerular injury and that pharmacological inhibition of p38 MAPK ameliorates podocyte damage. However, the effects of genetic deletion of p38 MAPK in podocytes of pod-GC-A cKO mice have been unclarified. Method We generated p38 MAPK(fl/fl);Nephrin-Cre (pod-p38 MAPK cKO) mice and p38 MAPK(fl/fl);GC-A(fl/fl);Nephrin-Cre (pod-p38MAPK/GC-A DKO) mice. For induction of glomerular injury, we treated them with aldosterone and high salt at 2 months of age for 3 weeks without nephrectomy (B-ALDO). In vitro, we examined the effect of p38 MAPK inhibitor in cultured human podocytes transfected with GC-A siRNA. Results B-ALDO-treated pod-p38 MAPK/GC-A DKO mice resulted in significant elevation of serum Cr (0.29 ± 0.04 mg/dl), massive albuminuria (42,660 ± 20,200 μg/mgCr) and severe foot process effacement in addition to intracapillary fibrin thrombi which indicated endothelial damage. Vehicle-treated DKO mice, B-ALDO-treated pod-GC-A cKO mice, and B-ALDO-treated pod-p38 MAPK cKO showed normal serum Cr levels (0.14 ± 0.01, 0.18 ± 0.02, 0.20 ± 0.01 mg/dl, respectively), mild increase of albuminuria (223 ± 6.5, 1,496 ± 592, 649 ± 303 μg/mgCr, respectively) and only segmental foot process effacement. Blood pressure was not elevated in either mutant mice compared with that of B-ALDO control mice. Furthermore, glomerular mRNA expressions of MCP-1, PAI-1, and FN were upregulated and that of VEGF-A was downregulated in DKO mice. In vitro, suppression of GC-A mRNA by siRNA in combination with p38 MAPK inhibitor downregulated VEGF mRNA in human cultured podocytes. Our previous works showed that pharmacological inhibition of p38 MAPK in the whole body ameliorated podocyte damage, whereas our current result showed that genetic deletion of p38 MAPK in podocytes aggravated renal injury. In order to explain the discrepancy in these results, we added an analysis of podocyte specific GC-A fl/fl p38 fl/+ cKO mice. Pod GC-A fl/fl p38 fl/+ cKO mice exhibited considerably milder renal damage than pod GC-A fl/fl p38 fl/fl double cKO mice. Conclusion Genetic complete p38 MAPK deletion in GC-A-nul podocytes exacerbated aldosterone-induced glomerular endothelial cell injury as well as podocytes, and resulted in renal dysfunction, probably through VEGF downregulation, whereas partial p38 MAPK inhibition in podocytes ameliorated aldosterone-induced glomerular injury in pod-GC-A cKO mice. These results suggest a certain level of p38 MAPK in podocytes is necessary to protect endothelial and epithelial cells from aldosterone-induced renal injury.


Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 247 ◽  
Author(s):  
Bin Zhang ◽  
Xuelian Zhang ◽  
Chenyang Zhang ◽  
Qiang Shen ◽  
Guibo Sun ◽  
...  

Diabetic nephropathy (DN) is a leading cause of end-stage renal failure, and no effective treatment is available. Notoginsenoside R1 (NGR1) is a novel saponin that is derived from Panax notoginseng, and our previous studies showed the cardioprotective and neuroprotective effects of NGR1. However, its role in protecting against DN remains unexplored. Herein, we established an experimental model in db/db mice and HK-2 cells exposed to advanced glycation end products (AGEs). The in vivo investigation showed that NGR1 treatment increased serum lipid, β2-microglobulin, serum creatinine, and blood urea nitrogen levels of db/db mice. NGR1 attenuated histological abnormalities of kidney, as evidenced by reducing the glomerular volume and fibrosis in diabetic kidneys. In vitro, NGR1 treatment was further found to decrease AGE-induced mitochondria injury, limit an increase in reactive oxygen species (ROS), and reduce apoptosis in HK-2 cells. Mechanistically, NGR1 promoted nucleus nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expressions to eliminate ROS that induced apoptosis and transforming growth factor beta (TGF-β) signaling. In summary, these observations demonstrate that NGR1 exerts renoprotective effects against DN through the inhibition of apoptosis and renal fibrosis caused by oxidative stress. NGR1 might be a potential therapeutic medicine for the treatment of DN.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Eric Macia ◽  
Mariagrazia Partisani ◽  
Hong Wang ◽  
Sandra Lacas-Gervais ◽  
Christophe Le Clainche ◽  
...  

AbstractThe Arf6-specific exchange factor EFA6 is involved in the endocytic/recycling pathway for different cargos. In addition EFA6 acts as a powerful actin cytoskeleton organizer, a function required for its role in the establishment of the epithelial cell polarity and in neuronal morphogenesis. We previously showed that the C-terminus of EFA6 (EFA6-Ct) is the main domain which contributes to actin reorganization. Here, by in vitro and in vivo experiments, we sought to decipher, at the molecular level, how EFA6 controls the dynamic and structuring of actin filaments. We showed that EFA6-Ct interferes with actin polymerization by interacting with and capping actin filament barbed ends. Further, in the presence of actin mono-filaments, the addition of EFA6-Ct triggered the formation of actin bundles. In cells, when the EFA6-Ct was directed to the plasma membrane, as is the case for the full-length protein, its expression induced the formation of membrane protrusions enriched in actin cables. Collectively our data explain, at least in part, how EFA6 plays an essential role in actin organization by interacting with and bundling F-actin.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Na Zhang ◽  
Yanbin Gao ◽  
Dawei Zou ◽  
Jinyang Wang ◽  
Jiaoyang Li ◽  
...  

Diabetic nephropathy (DN) is a major cause of chronic kidney failure and characterized by interstitial and glomeruli fibrosis. Epithelial-to-mesenchymal transition (EMT) plays an important role in the pathogenesis of DN. Tong xinluo (TXL), a Chinese herbal compound, has been used in China with established therapeutic efficacy in patients with DN. To investigate the molecular mechanism of TXL improving DN, KK-Ay mice were selected as models for the evaluation of pathogenesis and treatment in DN. In vitro, TGF-β1 was used to induce EMT. Western blot (WB), immunofluorescence staining, and real-time polymerase chain reaction (RT-PCR) were applied to detect the changes of EMT markers in vivo and in vitro, respectively. Results showed the expressions of TGF-β1 and its downstream proteins smad3/p-smad3 were greatly reduced in TXL group; meantime, TXL restored the expression of smad7. As a result, the expressions of collagen IV (Col IV) and fibronectin (FN) were significantly decreased in TXL group. In vivo, 24 h-UAER (24-hour urine albumin excretion ratio) and BUN (blood urea nitrogen) were decreased and Ccr (creatinine clearance ratio) was increased in TXL group compared with DN group. In summary, the present study demonstrates that TXL successfully inhibits TGF-β1-induced epithelial-to-mesenchymal transition in DN, which may account for the therapeutic efficacy in TXL-mediated renoprotection.


2011 ◽  
Vol 10 (4) ◽  
pp. 521-529 ◽  
Author(s):  
Gui Shen ◽  
Amy Whittington ◽  
Ping Wang

ABSTRACTHuman endocytic protein ITSN1 regulates actin reorganization by activating Rho family GTPases, such as Cdc42. The process is enhanced by ITSN binding of WASP, an effector of Cdc42 and a potent activator of actin polymerization. In the human pathogenCryptococcus neoformans, endocytic protein Cin1 also interacts with Cdc42 and Wsp1, an uncharacterized WASP homolog, but the significance of these interactions remains unknown. Wsp1 contains several conserved domains, including a WASP homology 1 domain (WH1), a GTPase binding/Cdc42 and Rac interactive binding domain (GBD/CRIB), and a C-terminal domain composed of verprolin-like, central, and acidic motifs (VCA). Thus, Wsp1 exhibits domain compositions more similar to human WASP proteins thanSaccharomyces cerevisiaeLas17/Bee1, a WASP homolog lacking the GDB/CRIB domain. Wsp1 is not an essential protein; however, thewsp1mutant exhibited defects in growth, cytokinesis, chitin distribution, and endocytosis and exocytosis. Thewsp1mutant was also unable to undergo genetic cross, produce the polysaccharide capsule, or secrete the enzyme urease. Anin vitrophagocytosis assay showed a higher phagocytic index for thewsp1mutant, whose ability to cause lethal infection in a murine model of cryptococcosis was also attenuated. Our studies reveal divergent evolution of WASP proteins in the fungal phylum and suggest that the conserved function of WASP proteins in the actin cytoskeleton may also impact fungal virulence.


1965 ◽  
Vol 13 (02) ◽  
pp. 428-438 ◽  
Author(s):  
K Reber ◽  
A Studer

SummaryThis is a comparative study of the methods described by H. P. Wright and O’Brien for determining the adhesiveness of thrombocytes. An attempt is made to characterize and statistically correlate both techniques. With the aid of a Coulter Counter for thrombocyte counts, a normal range is presented for human, rat, and rabbit blood. Anticoagulants used are sodium citrate and Heparin.The influence of Cocaine and the Serotonin antagonist Ro 3-0837 was studied on these same substrates, to determine a pharmacological interference with results of either Wright’s test or O’Brien’s. Both drugs are found to induce a statistically significant increase in the “thrombocyte count” as compared to the corresponding controls. These effects are not real but to be attributed to an increase in particle count due to thrombocyte fragmentation as a consequence of drug application. There is no evidence for the claim that these drugs decrease the adhesiveness of thrombocytes.Numerical results of both tests often show a high and statistically significant correlation, especially following the addition of Ro 3-0837. Such is not true of individual blood samples to which no drug has been added. Evidentally, both tests are not specific for the same characteristic of normal blood platelets. But, when Ro 3-0837 is added, the breakdown of unstable platelets is induced; and the corresponding increase in count of thrombocyte fragments is expressed by both tests in the same fashion.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 92-OR ◽  
Author(s):  
WEI HUANG ◽  
YONG XU ◽  
YOUHUA XU ◽  
LUPING ZHOU ◽  
CHENLIN GAO

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Narongrit Siriwattanasit ◽  
Bancha Satirapoj ◽  
Ouppatham Supasyndh

Abstract Background Activation of the transforming growth factor beta (TGF-β) pathway is a significant contributor to the pathogenesis of diabetic nephropathy. Carnosine is a dipeptide that can inhibit TGF-β synthesis. We tested the hypothesis that carnosine supplement added to standard therapy will result in reduced urinary TGF-β levels among patients with diabetic nephropathy. Methods We randomly assigned 40 patients with diabetic nephropathy and albuminuria 30–299 mg/day to treatment with carnosine (2 g/day) or placebo for 12 weeks. Urinary TGF-β level was determined using ELISA, urine albumin was ascertained by immunonephelometric assay, and renal function and metabolic profiles were determined at baseline and during 12 weeks of active treatment. Primary outcome was decrease in urinary levels of TGF-β. Results The 2 groups were comparable for baseline characteristics, blood pressure, urine albumin, urine TGF-β and renal function measurements. Urinary TGF-β significantly decreased with carnosine supplement (− 17.8% of the baseline values), whereas it tended to increase with placebo (+ 16.9% of the baseline values) (between-group difference P < 0.05). However, blood urea nitrogen, serum creatinine, glomerular filtration rate and other biochemical parameters remained unchanged during the study period including urinary albuminuria. Both groups were well tolerated with no serious side-effects. Conclusions These data indicated an additional renoprotective effect of oral supplementation with carnosine to decrease urinary TGF-β level that serves as a marker of renal injury in diabetic nephropathy. Trial registration Thai Clinical Trials, TCTR20200724002. Retrospectively Registered 24 July 2020.


Sign in / Sign up

Export Citation Format

Share Document