scholarly journals Early lineage segregation of the retinal basal glia in the Drosophila eye disc

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Chia-Kang Tsao ◽  
Yu Fen Huang ◽  
Y. Henry Sun

Abstract The retinal basal glia (RBG) is a group of glia that migrates from the optic stalk into the third instar larval eye disc while the photoreceptor cells (PR) are differentiating. The RBGs are grouped into three major classes based on molecular and morphological characteristics: surface glia (SG), wrapping glia (WG) and carpet glia (CG). The SGs migrate and divide. The WGs are postmitotic and wraps PR axons. The CGs have giant nucleus and extensive membrane extension that each covers half of the eye disc. In this study, we used lineage tracing methods to determine the lineage relationships among these glia subtypes and the temporal profile of the lineage decisions for RBG development. We found that the CG lineage segregated from the other RBG very early in the embryonic stage. It has been proposed that the SGs migrate under the CG membrane, which prevented SGs from contacting with the PR axons lying above the CG membrane. Upon passing the front of the CG membrane, which is slightly behind the morphogenetic furrow that marks the front of PR differentiation, the migrating SG contact the nascent PR axon, which in turn release FGF to induce SGs’ differentiation into WG. Interestingly, we found that SGs are equally distributed apical and basal to the CG membrane, so that the apical SGs are not prevented from contacting PR axons by CG membrane. Clonal analysis reveals that the apical and basal RBG are derived from distinct lineages determined before they enter the eye disc. Moreover, the basal SG lack the competence to respond to FGFR signaling, preventing its differentiation into WG. Our findings suggest that this novel glia-to-glia differentiation is both dependent on early lineage decision and on a yet unidentified regulatory mechanism, which can provide spatiotemporal coordination of WG differentiation with the progressive differentiation of photoreceptor neurons.

Development ◽  
1998 ◽  
Vol 125 (18) ◽  
pp. 3731-3740 ◽  
Author(s):  
Y. Sun ◽  
L.Y. Jan ◽  
Y.N. Jan

atonal is a proneural gene for the development of Drosophila chordotonal organs and photoreceptor cells. We show here that atonal expression is controlled by modular enhancer elements located 5′ or 3′ to the atonal-coding sequences. During chordotonal organ development, the 3′ enhancer directs expression in proneural clusters; whereas successive modular enhancers located in the 5′ region drive tissue-specific expression in chordotonal organ precursors in the embryo and larval leg, wing and antennal imaginal discs. Similarly, in the eye disc, the 3′ enhancer directs initial expression in a stripe anterior to the morphogenetic furrow. These atonal-expressing cells are then patterned through a Notch-dependent process into initial clusters, representing the earliest patterning event yet identified during eye morphogenesis. A distinct 5′ enhancer drives expression in intermediate groups and R8 cells within and posterior to the morphogenetic furrow. Both enhancers are required for normal atonal function in the eye. The 5′ enhancer, but not the 3′ enhancer, depends on endogenous atonal function, suggesting a switch from regulation directed by other upstream genes to atonal autoregulation during the process of lateral inhibition. The regulatory regions identified in this study can thus account for atonal expression in every tissue and essentially in every stage of its expression during chordotonal organ and photoreceptor development.


Development ◽  
1997 ◽  
Vol 124 (2) ◽  
pp. 559-567 ◽  
Author(s):  
F. Chanut ◽  
U. Heberlein

Morphogenesis in the Drosophila retina initiates at the posterior margin of the eye imaginal disc by an unknown mechanism. Upon initiation, a wave of differentiation, its forward edge marked by the morphogenetic furrow (MF), proceeds anteriorly across the disc. Progression of the MF is driven by hedgehog (hh), expressed by differentiating photoreceptor cells. The TGF-beta homolog encoded by decapentaplegic (dpp) is expressed at the disc's posterior margin prior to initiation and in the furrow, under the control of hh, during MF progression. While dpp has been implicated in eye disc growth and morphogenesis, its precise role in retinal differentiation has not been determined. To address the role of dpp in initiation and progression of retinal differentiation we analyzed the consequences of reduced and increased dpp function during eye development. We find that dpp is not only required for normal MF initiation, but is sufficient to induce ectopic initiation of differentiation. Inappropriate initiation is normally inhibited by wingless (wg). Loss of dpp function is accompanied by expansion of wg expression, while increased dpp function leads to loss of wg transcription. In addition, dpp is required to maintain, and sufficient to induce, its own expression along the disc's margins. We postulate that dpp autoregulation and dpp-mediated inhibition of wg expression are required for the coordinated regulation of furrow initiation and progression. Finally, we show that in the later stages of retinal differentiation, reduction of dpp function leads to an arrest in MF progression.


2007 ◽  
Vol 27 (24) ◽  
pp. 8561-8570 ◽  
Author(s):  
Aaron M. Ambrus ◽  
Brandon N. Nicolay ◽  
Vanya I. Rasheva ◽  
Richard J. Suckling ◽  
Maxim V. Frolov

ABSTRACT In Drosophila melanogaster, the loss of activator de2f1 leads to a severe reduction in cell proliferation and repression of E2F targets. To date, the only known way to rescue the proliferation block in de2f1 mutants was through the inactivation of dE2F2. This suggests that dE2F2 provides a major contribution to the de2f1 mutant phenotype. Here, we report that in mosaic animals, in addition to de2f2, the loss of a DEAD box protein Belle (Bel) also rescues proliferation of de2f1 mutant cells. Surprisingly, the rescue occurs in a dE2F2-independent manner since the loss of Bel does not relieve dE2F2-mediated repression. In the eye disc, bel mutant cells fail to undergo a G1 arrest in the morphogenetic furrow, delay photoreceptor recruitment and differentiation, and show a reduction of the transcription factor Ci155. The down-regulation of Ci155 is important since it is sufficient to partially rescue proliferation of de2f1 mutant cells. Thus, mutation of bel relieves the dE2F2-mediated cell cycle arrest in de2f1 mutant cells through a novel Ci155-dependent mechanism without functional inactivation of the dE2F2 repressor.


Development ◽  
1994 ◽  
Vol 120 (7) ◽  
pp. 1731-1745 ◽  
Author(s):  
A.L. Kolodkin ◽  
A.T. Pickup ◽  
D.M. Lin ◽  
C.S. Goodman ◽  
U. Banerjee

Loss-of-function mutations in Star impart a dominant rough eye phenotype and, when homozygous, are embryonic lethal with ventrolateral cuticular defects. We have cloned the Star gene and show that it encodes a novel protein with a putative transmembrane domain. Star transcript is expressed in a dynamic pattern in the embryo including in cells of the ventral midline. In the larval eye disc, Star is expressed first at the morphogenetic furrow, then in the developing R2, R5, and R8 cells as well as in the posterior clusters of the disc in additional R cells. Star interacts with Drosophila EGF receptor in the eye and mosaic analysis of Star in the larval eye disc reveals that homozygous Star patches contain no developing R cells. Taken together with the expression pattern at the morphogenetic furrow, these results demonstrate an early role for Star in photoreceptor development. Additionally, loss-of-function mutations in Star act as suppressors of R7 development in a sensitized genetic background involving the Son of sevenless (Sos) locus, and overexpression of Star enhances R7 development in this genetic background. Based on the genetic interactions with Sos, we suggest that Star also has a later role in photoreceptor development including the recruitment of the R7 cell through the sevenless pathway.


Development ◽  
1995 ◽  
Vol 121 (9) ◽  
pp. 3045-3055 ◽  
Author(s):  
L. Zheng ◽  
J. Zhang ◽  
R.W. Carthew

Coordinated morphogenesis of ommatidia during Drosophila eye development establishes a mirror-image symmetric pattern across the entire eye bisected by an anteroposterior equator. We have investigated the mechanisms by which this pattern formation occurs and our results suggest that morphogenesis is coordinated by a graded signal transmitted bidirectionally from the presumptive equator to the dorsal and ventral poles. This signal is mediated by frizzled, which encodes a cell surface transmembrane protein. Mosaic analysis indicates that frizzled acts non-autonomously in an equatorial to polar direction. It also indicates that relative levels of frizzled in photoreceptor cells R3 and R4 of each ommatidium affect their positional fate choices such that the cell with greater frizzled activity becomes an R3 cell and the cell with less frizzled activity becomes an R4 cell. Moreover, this bias affects the choice an ommatidium makes as to which direction to rotate. Equator-outwards progression of elav expression and expression of the nemo gene in the morphogenetic furrow are regulated by frizzled, which itself is dynamically expressed about the morphogenetic furrow. We propose that frizzled mediates a bidirectional signal emanating from the equator.


Development ◽  
2001 ◽  
Vol 128 (1) ◽  
pp. 1-11 ◽  
Author(s):  
C.A. Brennan ◽  
T.R. Li ◽  
M. Bender ◽  
F. Hsiung ◽  
K. Moses

The progression of the morphogenetic furrow in the developing Drosophila eye is an early metamorphic, ecdysteroid-dependent event. Although Ecdysone receptor-encoded nuclear receptor isoforms are the only known ecdysteroid receptors, we show that the Ecdysone receptor gene is not required for furrow function. DHR78, which encodes another candidate ecdysteroid receptor, is also not required. In contrast, zinc finger-containing isoforms encoded by the early ecdysone response gene Broad-complex regulate furrow progression and photoreceptor specification. br-encoded Broad-complex subfunctions are required for furrow progression and proper R8 specification, and are antagonized by other subfunctions of Broad-complex. There is a switch from Broad complex Z2 to Z1 zinc-finger isoform expression at the furrow which requires Z2 expression and responds to Hedgehog signals. These results suggest that a novel hormone transduction hierarchy involving an uncharacterized receptor operates in the eye disc.


Development ◽  
1996 ◽  
Vol 122 (12) ◽  
pp. 4139-4147 ◽  
Author(s):  
M.E. Dokucu ◽  
S.L. Zipursky ◽  
R.L. Cagan

In the developing Drosophila retina, the proneural gene for photoreceptor neurons is atonal, a basic helix-loop-helix transcription factor. Using atonal as a marker for proneural maturation, we examine the stepwise resolution of proneural clusters during the initiation of ommatidial differentiation in the developing eye disc. In addition, evidence is provided that atonal is negatively regulated by rough, a homeobox-containing transcription factor expressed exclusively in the retina. This interaction leads to the refinement of proneural clusters to specify R8, the first neuron to emerge in the retinal neuroepithelium. Ectopic expression of atonal or removal of rough results in the transformation of a discrete ‘equivalence group’ of cells into R8s. In addition, ectopic expression of rough blocks atonal expression and proneural cluster formation within the morphogenetic furrow. Thus, rough provides retina-specific regulation to the more general atonal-mediated proneural differentiation pathway. The opposing roles of atonal and rough are not mediated through the Notch pathway, as their expression remains complementary when Notch activity is reduced. These observations suggest that homeobox-containing genes can provide tissue-specific regulation to bHLH factors.


Development ◽  
1995 ◽  
Vol 121 (12) ◽  
pp. 4085-4094 ◽  
Author(s):  
F. Chanut ◽  
U. Heberlein

The Drosophila retina is a crystalline array of 800 ommatidia whose organization and assembly suggest polarization of the retinal epithelium along anteroposterior and dorsoventral axes. The retina develops by a stepwise process following the posterior-to-anterior progression of the morphogenetic furrow across the eye disc. Ectopic expression of hedgehog or local removal of patched function generates ectopic furrows that can progress in any direction across the disc leaving in their wake differentiating fields of ectopic ommatidia. We have studied the effect of these ectopic furrows on the polarity of ommatidial assembly and rotation. We find that the anteroposterior asymmetry of ommatidial assembly parallels the progression of ectopic furrows, regardless of their direction. In addition, ommatidia developing behind ectopic furrows rotate coordinately, forming equators in various regions of the disc. Interestingly, the expression of a marker normally restricted to the equator is induced in ectopic ommatidial fields. Ectopic equators are stable as they persist to adulthood, where they can coexist with the normal equator. Our results suggest that ectopic furrows can impart polarity to the disc epithelium, regarding the direction of both assembly and rotation of ommatidia. We propose that these processes are polarized as a consequence of furrow propagation, while more global determinants of dorsoventral and anteroposterior polarity may act less directly by determining the site of furrow initiation.


Development ◽  
1993 ◽  
Vol 118 (4) ◽  
pp. 1123-1135 ◽  
Author(s):  
Y. Hiromi ◽  
M. Mlodzik ◽  
S.R. West ◽  
G.M. Rubin ◽  
C.S. Goodman

During Drosophila ommatidial development, a single cell is selected within the ommatidial cluster to become the R7 photoreceptor neuron. The seven-up gene has been shown to play a role in this process by preventing four other photoreceptor precursors, R3/R4/R1/R6, from adopting the R7 cell fate. The seven-up gene encodes a steroid receptor-like molecule that is expressed only in those four cells that require seven-up function in the developing Drosophila ommatidium. We have examined the functional significance of the spatially restricted expression of seven-up by misexpressing seven-up isoforms. As expected from the function that seven-up performs in R3/R4/R1/R6, ubiquitous expression of seven-up causes transformation of the R7 cell to an R1-R6 cell fate. In addition, depending on the timing and spatial pattern of expression, various other phenotypes are produced including the loss of the R7 cell and the formation of extra R7 cells. Ubiquitous expression of seven-up close to the morphogenetic furrow interferes with R8 differentiation resulting in failure to express the boss protein, the ligand for the sevenless receptor tyrosine kinase, and the R7 cell is lost consequently. Extra R7 cells are formed by recruiting non-neuronal cone cells as photoreceptor neurons in a sevenless and bride of sevenless independent way. Thus, the spatiotemporal pattern of seven-up expression plays an essential role in controlling the number and cellular origin of the R7 neuron in the ommatidium. Our results also suggest that seven-up controls decisions not only between photoreceptor subtypes, but also between neuronal and non-neuronal fates.


Development ◽  
2001 ◽  
Vol 128 (4) ◽  
pp. 591-601 ◽  
Author(s):  
J. Bai ◽  
W. Chiu ◽  
J. Wang ◽  
T. Tzeng ◽  
N. Perrimon ◽  
...  

Photoreceptor and cone cells in the Drosophila eye are recruited following activation of the epidermal growth factor receptor (EGFR) pathway. We have identified echinoid (ed) as a novel putative cell adhesion molecule that negatively regulates EGFR signaling. The ed mutant phenotype is associated with extra photoreceptor and cone cells. Conversely, ectopic expression of ed in the eye leads to a reduction in the number of photoreceptor cells. ed expression is independent of EGFR signaling and ED is localized to the plasma membrane of every cells throughout the eye disc. We present evidence that ed acts nonautonomously to generate extra R7 cells by a mechanism that is sina-independent but upstream of Tramtrack (TTK88). Together, our results support a model whereby ED defines an independent pathway that antagonizes EGFR signaling by regulating the activity, but not the level, of the TTK88 transcriptional repressor.


Sign in / Sign up

Export Citation Format

Share Document