Atonal, rough and the resolution of proneural clusters in the developing Drosophila retina

Development ◽  
1996 ◽  
Vol 122 (12) ◽  
pp. 4139-4147 ◽  
Author(s):  
M.E. Dokucu ◽  
S.L. Zipursky ◽  
R.L. Cagan

In the developing Drosophila retina, the proneural gene for photoreceptor neurons is atonal, a basic helix-loop-helix transcription factor. Using atonal as a marker for proneural maturation, we examine the stepwise resolution of proneural clusters during the initiation of ommatidial differentiation in the developing eye disc. In addition, evidence is provided that atonal is negatively regulated by rough, a homeobox-containing transcription factor expressed exclusively in the retina. This interaction leads to the refinement of proneural clusters to specify R8, the first neuron to emerge in the retinal neuroepithelium. Ectopic expression of atonal or removal of rough results in the transformation of a discrete ‘equivalence group’ of cells into R8s. In addition, ectopic expression of rough blocks atonal expression and proneural cluster formation within the morphogenetic furrow. Thus, rough provides retina-specific regulation to the more general atonal-mediated proneural differentiation pathway. The opposing roles of atonal and rough are not mediated through the Notch pathway, as their expression remains complementary when Notch activity is reduced. These observations suggest that homeobox-containing genes can provide tissue-specific regulation to bHLH factors.

2001 ◽  
Vol 21 (19) ◽  
pp. 6418-6428 ◽  
Author(s):  
Shelley Lane ◽  
Song Zhou ◽  
Ting Pan ◽  
Qian Dai ◽  
Haoping Liu

ABSTRACT Candida albicans undergoes a morphogenetic switch from budding yeast to hyphal growth form in response to a variety of stimuli and growth conditions. Multiple signaling pathways, including a Cph1-mediated mitogen-activated protein kinase pathway and an Efg1-mediated cyclic AMP/protein kinase A pathway, regulate the transition. Here we report the identification of a basic helix-loop-helix transcription factor of the Myc subfamily (Cph2) by its ability to promote pseudohyphal growth inSaccharomyces cerevisiae. Like sterol response element binding protein 1, Cph2 has a Tyr instead of a conserved Arg in the basic DNA binding region. Cph2 regulates hyphal development in C. albicans, ascph2/cph2 mutant strains show medium-specific impairment in hyphal development and in the induction of hypha-specific genes. However, many hypha-specific genes do not have potential Cph2 binding sites in their upstream regions. Interestingly, upstream sequences of all known hypha-specific genes are found to contain potential binding sites for Tec1, a regulator of hyphal development. Northern analysis shows that TEC1 transcription is highest in the medium in which cph2/cph2 displays a defect in hyphal development, and Cph2 is necessary for this transcriptional induction of TEC1. In vitro gel mobility shift experiments show that Cph2 directly binds to the two sterol regulatory element 1-like elements upstream of TEC1. Furthermore, the ectopic expression of TEC1 suppresses the defect ofcph2/cph2 in hyphal development. Therefore, the function of Cph2 in hyphal transcription is mediated, in part, through Tec1. We further show that this function of Cph2 is independent of the Cph1- and Efg1-mediated pathways.


2001 ◽  
Vol 21 (5) ◽  
pp. 1866-1873 ◽  
Author(s):  
Lauren Snider ◽  
Hilary Thirlwell ◽  
Jeffrey R. Miller ◽  
Randall T. Moon ◽  
Mark Groudine ◽  
...  

ABSTRACT We have determined that I-mfa, an inhibitor of several basic helix-loop-helix (bHLH) proteins, and XIC, a Xenopusortholog of human I-mf domain-containing protein that shares a highly conserved cysteine-rich C-terminal domain with I-mfa, inhibit the activity and DNA binding of the HMG box transcription factor XTcf3. Ectopic expression of I-mfa or XIC in early Xenopus embryos inhibited dorsal axis specification, the expression of the Tcf3/β-catenin-regulated genessiamois and Xnr3, and the ability of β-catenin to activate reporter constructs driven by Lef/Tcf binding sites. I-mfa domain proteins can regulate both the Wnt signaling pathway and a subset of bHLH proteins, possibly coordinating the activities of these two critical developmental pathways.


Development ◽  
2021 ◽  
Author(s):  
Michael L. Kaufman ◽  
Noah B. Goodson ◽  
Ko Uoon Park ◽  
Michael Schwanke ◽  
Emma Office ◽  
...  

During retinal development, a large subset of progenitors upregulates the transcription factor Otx2, which is required for photoreceptor and bipolar cell formation. How these retinal progenitor cells initially activate Otx2 expression is unclear. To address this, we investigated the cis-regulatory network that controls Otx2 expression. We identified a minimal enhancer element, DHS-4D, that drove expression in newly formed OTX2+ cells. CRISPR/Cas9 mediated deletion of DHS-4D reduced OTX2 expression, but this effect was diminished in postnatal development. Systematic mutagenesis of the enhancer revealed that three basic helix-loop-helix (bHLH) transcription factor binding sites were required for its activity. Single cell RNA-sequencing of nascent Otx2+ cells identified the bHLH factors Ascl1 and Neurog2 as candidate regulators. CRISPR/Cas9 targeting of these factors showed that only the simultaneous loss of Ascl1 and Neurog2 prevented OTX2 expression. Our findings suggest that Ascl1 and Neurog2 act redundantly or in a compensatory fashion to activate the DHS-4D enhancer and Otx2 expression. We observed redundancy or compensation at both the transcriptional and enhancer utilization levels, suggesting that the mechanisms governing Otx2 regulation in the retina are flexible and robust.


Development ◽  
1993 ◽  
Vol 119 (1) ◽  
pp. 1-17 ◽  
Author(s):  
M. Brand ◽  
A.P. Jarman ◽  
L.Y. Jan ◽  
Y.N. Jan

Neural precursor cells in Drosophila arise from the ectoderm in the embryo and from imaginal disc epithelia in the larva. In both cases, this process requires daughterless and the proneural genes achaete, scute and lethal-of-scute of the achaete-scute complex. These genes encode basic helix-loop-helix proteins, which are nuclear transcription factors, as does the asense gene of the achaete-scute complex. Our studies suggest that asense is a neural precursor gene, rather than a proneural gene. Unlike the proneural achaete-scute gene products, the asense RNA and protein are found in the neural precursor during its formation, but not in the proneural cluster of cells that gives rise to the neural precursor cell. Also, asense expression persists longer during neural precursor development than the proneural gene products; it is still expressed after the first division of the neural precursor. Moreover, asense is likely to be downstream of the proneural genes, because (1) asense expression is affected in proneural and neurogenic mutant backgrounds, (2) ectopic expression of asense protein with an intact DNA-binding domain bypasses the requirement for achaete and scute in the formation of imaginal sense organs. We further note that asense ectopic expression is capable of initiating the sense organ fate in cells that do not normally require the action of asense. Our studies therefore serve as a cautionary note for the inference of normal gene function based on the gain-of-function phenotype after ectopic expression.


Development ◽  
1998 ◽  
Vol 125 (11) ◽  
pp. 2041-2051 ◽  
Author(s):  
D.B. Sparrow ◽  
W.C. Jen ◽  
S. Kotecha ◽  
N. Towers ◽  
C. Kintner ◽  
...  

The presomitic mesoderm of vertebrates undergoes a process of segmentation in which cell-cell interactions mediated by the Notch family of receptors and their associated ligands are involved. The vertebrate homologues of Drosophila Δ are expressed in a dynamic, segmental pattern within the presomitic mesoderm, and alterations in the function of these genes leads to a perturbed pattern of somite segmentation. In this study we have characterised Thylacine 1 which encodes a basic helix-loop-helix class transcription activator. Expression of Thylacine is restricted to the presomitic mesoderm, localising to the anterior half of several somitomeres in register with domains of X-Delta-2 expression. Ectopic expression of Thylacine in embryos causes segmentation defects similar to those seen in embryos in which Notch signalling is altered, and these embryos also show severe disruption in the expression patterns of the marker genes X-Delta-2 and X-ESR5 within the presomitic mesoderm. Finally, the expression of Thylacine is altered in embryos when Notch signalling is perturbed. These observations suggest strongly that Thylacine 1 has a role in the segmentation pathway of the Xenopus embryo, by interacting with the Notch signalling pathway.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Charlotte P Choi ◽  
Rebecca J Tay ◽  
Margaret R Starostik ◽  
Suhua Feng ◽  
James J Moresco ◽  
...  

Piwi-interacting RNAs (piRNAs) play essential roles in silencing repetitive elements to promote fertility in metazoans. Studies in worms, flies, and mammals reveal that piRNAs are expressed in a sex-specific manner. However, the mechanisms underlying this sex-specific regulation are unknown. Here we identify SNPC-1.3, a male germline-enriched variant of a conserved subunit of the small nuclear RNA-activating protein complex, as a male-specific piRNA transcription factor in Caenorhabditis elegans. SNPC-1.3 colocalizes with the core piRNA transcription factor, SNPC-4, in nuclear foci of the male germline. Binding of SNPC-1.3 at male piRNA loci drives spermatogenic piRNA transcription and requires SNPC-4. Loss of snpc-1.3 leads to depletion of male piRNAs and defects in male-dependent fertility. Furthermore, TRA-1, a master regulator of sex determination, binds to the snpc-1.3 promoter and represses its expression during oogenesis. Loss of TRA-1 targeting causes ectopic expression of snpc-1.3 and male piRNAs during oogenesis. Thus, sexually dimorphic regulation of snpc-1.3 expression coordinates male and female piRNA expression during germline development.


1998 ◽  
Vol 188 (3) ◽  
pp. 439-450 ◽  
Author(s):  
Gorazd Krosl ◽  
Gang He ◽  
Martin Lefrancois ◽  
Frédéric Charron ◽  
Paul-Henri Roméo ◽  
...  

In normal hemopoietic cells that are dependent on specific growth factors for cell survival, the expression of the basic helix-loop-helix transcription factor SCL/Tal1 correlates with that of c-Kit, the receptor for Steel factor (SF) or stem cell factor. To address the possibility that SCL may function upstream of c-kit, we sought to modulate endogenous SCL function in the CD34+ hemopoietic cell line TF-1, which requires SF, granulocyte/macrophage colony–stimulating factor, or interleukin 3 for survival. Ectopic expression of an antisense SCL cDNA (as-SCL) or a dominant negative SCL (dn-SCL) in these cells impaired SCL DNA binding activity, and prevented the suppression of apoptosis by SF only, indicating that SCL is required for c-Kit–dependent cell survival. Consistent with the lack of response to SF, the level of c-kit mRNA and c-Kit protein was significantly and specifically reduced in as-SCL– or dn-SCL– expressing cells. c-kit mRNA, c-kit promoter activity, and the response to SF were rescued by SCL overexpression in the antisense or dn-SCL transfectants. Furthermore, ectopic c-kit expression in as-SCL transfectants is sufficient to restore cell survival in response to SF. Finally, enforced SCL in the pro–B cell line Ba/F3, which is both SCL and c-kit negative is sufficient to induce c-Kit and SF responsiveness. Together, these results indicate that c-kit, a gene that is essential for the survival of primitive hemopoietic cells, is a downstream target of the transcription factor SCL.


Author(s):  
Charlotte P. Choi ◽  
Rebecca J. Tay ◽  
Margaret R. Starostik ◽  
Suhua Feng ◽  
James J. Moresco ◽  
...  

ABSTRACTPiwi-interacting RNAs (piRNAs) play essential roles in silencing repetitive elements to promote fertility in metazoans. Studies in worms, flies, and mammals reveal that piRNAs are expressed in a sex-specific manner. However, the mechanisms underlying this sex-specific regulation are unknown. Here we identify SNPC-1.3, a variant of a conserved subunit of the snRNA activating protein complex, as a male-specific piRNA transcription factor in C. elegans. Binding of SNPC-1.3 at male piRNA loci drives spermatogenic piRNA transcription and requires the core piRNA transcription factor SNPC-4. Loss of snpc-1.3 leads to depletion of male piRNAs and defects in male-dependent fertility. Furthermore, TRA-1, a master regulator of sex determination, binds to the snpc-1.3 promoter and represses its expression during oogenesis. Loss of TRA-1 targeting causes ectopic expression of snpc-1.3 and male piRNAs during oogenesis. Thus, sexual dimorphic regulation of snpc-1.3 coordinates male and female piRNA expression during germline development.


2018 ◽  
Vol 3 ◽  
pp. 125 ◽  
Author(s):  
Laura J.A. Hardwick ◽  
Anna Philpott

The proneural basic-helix-loop-helix (bHLH) transcription factor Ascl1 is a master regulator of neurogenesis in both central and peripheral nervous systems in vivo, and is a central driver of neuronal reprogramming in vitro. Over the last three decades, assaying primary neuron formation in Xenopus embryos in response to transcription factor overexpression has contributed to our understanding of the roles and regulation of proneural proteins like Ascl1, with homologues from different species usually exhibiting similar functional effects. Here we demonstrate that the mouse Ascl1 protein is twice as active as the Xenopus protein in inducing neural-β-tubulin expression in Xenopus embryos, despite there being little difference in protein accumulation or ability to undergo phosphorylation, two properties known to influence Ascl1 function. This superior activity of the mouse compared to the Xenopus protein is dependent on the presence of the non-conserved N terminal region of the protein, and indicates species-specific regulation that may necessitate care when interpreting results in cross-species experiments.


Sign in / Sign up

Export Citation Format

Share Document