scholarly journals Hierarchical analysis of ontogenetic time to describe heterochrony and taxonomy of developmental stages

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Guillaume Lecointre ◽  
Nalani K. Schnell ◽  
Fabrice Teletchea

AbstractEven though an accurate description of early life stages is available for some teleostean species in form of embryonic and post-embryonic developmental tables, there is poor overlap between species-specific staging vocabularies beyond the taxonomic family level. What is called “embryonic period”, “larval period”, “metamorphosis”, or “juvenile” is anatomically different across teleostean families. This problem, already pointed out 50 years ago, challenges the consistency of developmental biology, embryology, systematics, and hampers an efficient aquaculture diversification. We propose a general solution by producing a proof-of-concept hierarchical analysis of ontogenetic time using a set of four freshwater species displaying strongly divergent reproductive traits. With a parsimony analysis of a matrix where “operational taxonomic units” are species at a given ontogenetic time segment and characters are organs or structures which are coded present or absent at this time, we show that the hierarchies obtained have both very high consistency and retention index, indicating that the ontogenetic time is correctly grasped through a hierarchical graph. This allows to formally detect developmental heterochronies and might provide a baseline to name early life stages for any set of species. The present method performs a phylogenetic segmentation of ontogenetic time, which can be correctly seen as depicting ontophylogenesis.

2019 ◽  
Vol 82 (1) ◽  
Author(s):  
Andres F. Prada ◽  
Amy E. George ◽  
Benjamin H. Stahlschmidt ◽  
Patrick Ryan Jackson ◽  
Duane C. Chapman ◽  
...  

AbstractUnderstanding the response of grass carp to flow and turbulence regimes during early life stages is fundamental to monitoring and controlling their spread. A comprehensive set of hydrodynamic experiments was conducted with live grass carp eggs and larvae, to better understand their drifting and swimming patterns with 3 different in-stream obstructions: (1) a gravel bump, (2) a single cylinder, and (3) submerged vegetation. The hydrodynamic behavior of eggs and larvae with each obstruction was continuously monitored for about 85 consecutive hours. Transient spatial distributions of the locations of eggs and larvae throughout the water column were generated for each flow scenario. Results show that the active swimming capabilities of larvae allow them to seek areas of low turbulence and low shear stresses, and that eggs are susceptible to damage by high levels of turbulence, which was further corroborated with tests in an oscillating grid-stirred turbulence tank. Our study seeks to better inform field collection of grass carp during early life stages, and to guide the design of alternative approaches to control the dispersal of this invasive species in North America.


2004 ◽  
Vol 52 (2) ◽  
pp. 231 ◽  
Author(s):  
T. T. Huynh ◽  
A. C. Lawrie ◽  
F. Coates ◽  
C. B. McLean

Six developmental stages (leafing, budding, flowering, fruiting, senescence and dormancy) were chosen in the threatened terrestrial orchid Caladenia formosa G.W.Carr to optimise isolation of effective fungi. Loose (undigested) pelotons were observed by scanning electron microscopy in the old tuber and collar, suggesting a role in infection of new tissue. In collars collected at early life stages (leafing, budding, flowering), pelotons had loosely coiled hyphae that were uniformly fine (1–2 μm diameter), with or without monilioid cells. In collars collected from older life stages (fruiting, senescence), pelotons had increasing proportions (up to 94%) of clumped fine hyphae. Coarser hyphae (4–6 μm diameter) were also present in the fruiting stage in one year. Only fungi isolated from single pelotons in collars of early life stages (leafing, budding, flowering) had fine hyphae with monilioid cells and induced seed germination (to green leaf production). Sectioned protocorms had pelotons of fine, loosely coiled hyphae with monilioid cells, as in field-collected material from early life stages. This suggests that the most effective fungi for conservation of this orchid are likely to be isolated from pelotons of loose fine hyphae with monilioid cells from leafing to flowering stages.


1977 ◽  
Vol 34 (8) ◽  
pp. 1148-1154 ◽  
Author(s):  
James M. McKim

Partial and complete life-cycle toxicity tests with fish, involving all developmental stages, have been used extensively in the establishment of water-quality criteria for aquatic life. During extended chronic exposures of fish to selected toxicants, certain developmental stages have frequently shown a greater sensitivity than others. In 56 life-cycle toxicity tests completed during the last decade with 34 organic and inorganic chemicals and four species of fish, the embryo–larval and early juvenile life stages were the most, or among the most, sensitive. Tests with these stages can be used to estimate the maximum acceptable toxicant concentration (MATC) within a factor of two in most cases. Therefore, toxicity tests with these early life stages of fish should be useful in establishing water-quality criteria and in screening large numbers of chemicals. Key words: fish, embryos, larvae, chronic toxicity, early life stages


2020 ◽  
Author(s):  
Samantha Victoria Beck ◽  
Katja Räsänen ◽  
Camille A. Leblanc ◽  
Skúli Skúlason ◽  
Zophonías O. Jónsson ◽  
...  

Abstract Background Organismal fitness can be determined at early life-stages, but phenotypic variation at early life-stages is rarely considered in studies on evolutionary diversification. The trophic apparatus has been shown to contribute to sympatric resource-mediated divergence in several taxa. However, processes underlying diversification in trophic traits are poorly understood. Using phenotypically variable Icelandic Arctic charr (Salvelinus alpinus), we reared offspring from multiple families under standardized laboratory conditions and tested to what extent family (i.e. direct genetic and maternal effects) contributes to offspring morphology at hatching (H) and first feeding (FF). To understand the underlying mechanisms behind early life-stage variation in morphology, we examined how craniofacial shape varied according to family, offspring size, egg size and candidate gene expression. Results Craniofacial shape (i.e. the Meckel’s cartilage and hyoid arch) was more variable between families than within families both across and within developmental stages. Differences in craniofacial morphology between developmental stages correlated with offspring size, whilst within developmental stages only shape at FF correlated with offspring size, as well as female mean egg size. Larger offspring and offspring from females with larger eggs consistently had a wider hyoid arch and contracted Meckel’s cartilage in comparison to smaller offspring.Conclusions This study provides evidence for family-level variation in early life-stage trophic morphology, indicating the potential for parental effects to facilitate resource polymorphism.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Samantha V. Beck ◽  
Katja Räsänen ◽  
Camille A. Leblanc ◽  
Skúli Skúlason ◽  
Zophonías O. Jónsson ◽  
...  

Abstract Background Organismal fitness can be determined at early life-stages, but phenotypic variation at early life-stages is rarely considered in studies on evolutionary diversification. The trophic apparatus has been shown to contribute to sympatric resource-mediated divergence in several taxa. However, processes underlying diversification in trophic traits are poorly understood. Using phenotypically variable Icelandic Arctic charr (Salvelinus alpinus), we reared offspring from multiple families under standardized laboratory conditions and tested to what extent family (i.e. direct genetic and maternal effects) contributes to offspring morphology at hatching (H) and first feeding (FF). To understand the underlying mechanisms behind early life-stage variation in morphology, we examined how craniofacial shape varied according to family, offspring size, egg size and candidate gene expression. Results Craniofacial shape (i.e. the Meckel’s cartilage and hyoid arch) was more variable between families than within families both across and within developmental stages. Differences in craniofacial morphology between developmental stages correlated with offspring size, whilst within developmental stages only shape at FF correlated with offspring size, as well as female mean egg size. Larger offspring and offspring from females with larger eggs consistently had a wider hyoid arch and contracted Meckel’s cartilage in comparison to smaller offspring. Conclusions This study provides evidence for family-level variation in early life-stage trophic morphology, indicating the potential for parental effects to facilitate resource polymorphism.


2011 ◽  
Vol 101 (1-2) ◽  
pp. 85-92 ◽  
Author(s):  
Isabela M. S Araújo ◽  
Elisabeth C Silva-Falcão ◽  
William Severi

The present study aims to compare the buccal apparatus and gastrointestinal tract of early life stages of Centropomus undecimalis (Bloch, 1792), and relate them to its diet. A total of 190 individuals collected with a channel net in the Catuama estuary (07º40'9.9''S, 34º50'36.7''W), northern coast of the state of Pernambuco, were examined. Morphometrical and meristic data were analyzed for the two initial developmental periods (larval and juvenile). Their digestive tube was morphologically characterized and its content identified. The longest transverse axis of food items was measured, and compared to the standard length (SL) and mouth gape size (D) of the individuals. Body measurement regressions differed significantly (p<0.001) between larvae and juveniles. The stomachs with food content (n=118 individuals) presented a proportion of 62% full and 30% empty (being 8% damaged). They differed in relation to the fullness level and presented a coiled shape when empty. The number of food items in relation to SL and D did not present an evident correlation. Larvae (SL<10 mm) feed on small copepods, while juveniles (SL=11.1 to 64.7 mm) ingest larvae of various decapod species, showing a distinct diet between these initial developmental stages.


2019 ◽  
Vol 617-618 ◽  
pp. 67-79 ◽  
Author(s):  
GF de Carvalho-Souza ◽  
E González-Ortegón ◽  
F Baldó ◽  
C Vilas ◽  
P Drake ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
pp. ACCEPTED
Author(s):  
Rho-Jeong Rae

This study investigated the boreal digging frog, Kaloula borealis, to determine the egg hatching period and whether the hatching period is affected by incubation temperature. The results of this study showed that all the eggs hatched within 48 h after spawning, with 28.1% (±10.8, n=52) hatching within 24 h and 99.9% (±0.23, n=49) within 48 h after spawning. A significant difference was noted in the mean hatching proportion of tadpoles at different water temperatures. The mean hatching rates between 15 and 24 h after spawning was higher at a water temperature of 21.1 (±0.2) °C than at 24.1 (±0.2) °C. These results suggest that incubation temperature affected the early life stages of the boreal digging frog, since they spawn in ponds or puddles that form during the rainy season.


Sign in / Sign up

Export Citation Format

Share Document