scholarly journals Characterisation of CD4+ T-cell subtypes using single cell RNA sequencing and the impact of cell number and sequencing depth

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
James Ding ◽  
Samantha L. Smith ◽  
Gisela Orozco ◽  
Anne Barton ◽  
Steve Eyre ◽  
...  

AbstractCD4+ T-cells represent a heterogeneous collection of specialised sub-types and are a key cell type in the pathogenesis of many diseases due to their role in the adaptive immune system. By investigating CD4+ T-cells at the single cell level, using RNA sequencing (scRNA-seq), there is the potential to identify specific cell states driving disease or treatment response. However, the impact of sequencing depth and cell numbers, two important factors in scRNA-seq, has not been determined for a complex cell population such as CD4+ T-cells. We therefore generated a high depth, high cell number dataset to determine the effect of reduced sequencing depth and cell number on the ability to accurately identify CD4+ T-cell subtypes. Furthermore, we investigated T-cell signatures under resting and stimulated conditions to assess cluster specific effects of stimulation. We found that firstly, cell number has a much more profound effect than sequencing depth on the ability to classify cells; secondly, this effect is greater when cells are unstimulated and finally, resting and stimulated samples can be combined to leverage additional power whilst still allowing differences between samples to be observed. While based on one individual, these results could inform future scRNA-seq studies to ensure the most efficient experimental design.

Immuno ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 119-131
Author(s):  
Jana Palmowski ◽  
Kristina Gebhardt ◽  
Thomas Reichel ◽  
Torsten Frech ◽  
Robert Ringseis ◽  
...  

CD4+ T cells are sensitive to peripheral changes of cytokine levels and metabolic substrates such as glucose and lactate. This study aimed to analyze whether factors released after exercise alter parameters of human T cell metabolism, specifically glycolysis and oxidative phosphorylation. We used primary human CD4+ T cells activated in the presence of autologous serum, which was collected before (CO) and after a 30-min exercise intervention (EX). In the course of activation, cells and supernatants were analyzed for cell viability and diameter, real-time oxygen consumption by using PreSens Technology, mRNA expression of glycolytic enzymes and complexes of the electron transport chain by real-time PCR, glucose, and lactate levels in supernatants, and in vitro differentiation by flow cytometry. EX did not alter T cell phenotype, viability, or on-blast formation. Similarly, no difference between CO and EX were found for CD4+ T cell activation and cellular oxygen consumption. In contrast, higher levels of glucose were found after 48 h activation in EX conditions. T cells activated in autologous exercise serum expressed lower HK1 mRNA and higher IFN-γ receptor 1. We suggest that the exercise protocol used was not sufficient to destabilize the immune metabolism of T cells. Therefore, more intense and prolonged exercise should be used in future studies.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2190-2190
Author(s):  
Sara Trabanelli ◽  
Darina Ocadlikova ◽  
Sara Gulinelli ◽  
Marco Idzko ◽  
Antonio Curti ◽  
...  

Abstract Abstract 2190 Adenosine 5'-triphosphate (ATP) plays a pivotal role in several cellular processes, through specific cell membrane purinergic P2 receptors (P2Rs). During inflammation and tumor cell growth, cell necrosis causes the release of intracellular ATP into the extracellular space, thus increasing from low (1–10 nM) to high (5–10 mM) the concentration of extracellular ATP. For this reason, variations in the extracellular ATP concentration might activate/inhibit the immune system. Here we investigated the role of ATP on CD4+ T-cell functions. We first demonstrated the expression of P2Rs for extracellular nucleotides in human activated CD4+ T cells and regulatory T cells (Tregs) We then show that physiological concentrations of extracellular ATP (i.e. 1–50 nM) do not affect both activated CD4+ T cells and Tregs. Conversely, supraphysiological concentrations of ATP show a bimodal effect on activated CD4+ T cells. Whereas 250 nM of ATP stimulates proliferation, cytokine release, expression of adhesion molecules and adhesion, high ATP concentration (i.e. 1 mM) induces apoptosis and inhibits activated CD4+ T-cell functions. On the contrary, at the same high concentration, ATP enhances the proliferation, adhesion, migration and immunosuppressive ability of Tregs. Similar results are obtained when activated CD4+ T cells and Tregs are exposed to ATP released by necrotized leukemic blasts. The present results provide evidence that different concentrations of extracellular ATP modulate T cells according to their activation status. Therefore, high concentrations of ATP, compatible with fast-growing tumors or hyper-inflamed tissues, may have a key role in killing activated CD4+ T cells and in expanding Tregs. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 4 (s1) ◽  
pp. 6-7
Author(s):  
Rachel Quinn Muir ◽  
Barbara J. Klocke ◽  
Kasi C. McPherson ◽  
Jeremy B. Foote ◽  
Jennifer S. Pollock ◽  
...  

OBJECTIVES/GOALS: The overall goal of this study was to determine the effect of early life stress (ELS) on the intestinal CD4+ T cell immune compartment, at homeostasis and after induction of experimental Inflammatory Bowel Disease (IBD). METHODS/STUDY POPULATION: We used a mouse model of ELS, maternal separation with early weaning (MSEW). We used IL-10 reporter mice to enable analysis of IL-10-producing cells. Mice were examined on postnatal day 28 to determine the impact of ELS on gut regulatory T cells. Plasma levels of corticosterone (rodent stress response hormone) was determined by ELISA. Colitis was induced in MSEW and normal rear (NR) mice via intraperitoneal injection of α-IL-10R every 5 days until day 15. Mice were euthanized on days 20 and 30. Colonic tissue sections were stained for histological analysis. Remaining tissue was further processed for flow cytometric analysis of CD4+ T cells and innate lymphoid cells. RESULTS/ANTICIPATED RESULTS: Plasma corticosterone was elevated in MSEW mice compared to their NR counterparts at 4 weeks of age. We observed that the MSEW stress protocol does not affect the baseline colonic CD4+ T cell or innate lymphoid cell populations. There was a reduction in the intestinal CD4+ T cells and regulatory T cells on day 20 in α-IL-10R MSEW mice compared to NR counterparts. This difference disappeared by day 30. Histological scoring showed no difference in disease severity between α-IL-10R treated MSEW and NR mice on day 20. However, on day 30, when α-IL-10R NR mice are recovering from colitis, MSEW mice showed persistent histological inflammation, mainly attributable to sustained epithelial damage. DISCUSSION/SIGNIFICANCE OF IMPACT: Our results suggest that ELS prolongs intestinal inflammation and impairs epithelial repair. Future studies will focus on elucidating the mechanisms responsible for ELS-dependent impairment of mucosal repair in experimental colitis.


Blood ◽  
2011 ◽  
Vol 118 (4) ◽  
pp. 965-974 ◽  
Author(s):  
Filippos Porichis ◽  
Douglas S. Kwon ◽  
Jennifer Zupkosky ◽  
Daniel P. Tighe ◽  
Ashley McMullen ◽  
...  

Abstract Defining the T helper functions impaired by programmed death–1 (PD-1) is crucial for understanding its role in defective HIV control and determining the therapeutic potential of targeting this inhibitory pathway. We describe here the relationships among disease stage, levels of PD-1 expression, and reversibility of CD4 T-cell impairment. PD-L1 blockade in vitro enhanced HIV-specific production of Th0 (IL-2), Th1 (IFN-γ), Th2 (IL-13), and TFH (IL-21) cytokines by CD4 T cells. PD-L1 blockade caused an early increase in cytokine transcription and translation that preceded cell proliferation. Although the impact of PD-L1 blockade on cytokine expression and, to a lesser extent, cell proliferation was associated with markers of disease progression, restoration of cytokine secretion was also observed in most subjects with undetectable viremia. PD-L1 blockade restored cytokine secretion in both PD-1intermediate and PD-1high sorted CD4 T-cell subsets. Compared with PD-1high HIV-specific CD8 T cells, PD-1high HIV-specific CD4 T cells showed lower expression of the inhibitory molecules CD160 and 2B4, demonstrating marked differences in expression of inhibitory receptors between T-cell subsets. These data show that PD-1 impairs HIV-specific T helper responses both by limiting expansion of these cells and by inhibiting effector functions of multiple differentiated CD4 T-cell subsets.


2010 ◽  
Vol 277 (1701) ◽  
pp. 3773-3781 ◽  
Author(s):  
Ming Liang Chan ◽  
Janka Petravic ◽  
Alexandra M. Ortiz ◽  
Jessica Engram ◽  
Mirko Paiardini ◽  
...  

Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections result in chronic virus replication and progressive depletion of CD4+ T cells, leading to immunodeficiency and death. In contrast, ‘natural hosts’ of SIV experience persistent infection with high virus replication but no severe CD4+ T cell depletion, and remain AIDS-free. One important difference between pathogenic and non-pathogenic infections is the level of activation and proliferation of CD4+ T cells. We analysed the relationship between CD4+ T cell number and proliferation in HIV, pathogenic SIV in macaques, and non-pathogenic SIV in sooty mangabeys (SMs) and mandrills. We found that CD4+ T cell proliferation was negatively correlated with CD4+ T cell number, suggesting that animals respond to the loss of CD4+ T cells by increasing the proliferation of remaining cells. However, the level of proliferation seen in pathogenic infections (SIV in rhesus macaques and HIV) was much greater than in non-pathogenic infections (SMs and mandrills). We then used a modelling approach to understand how the host proliferative response to CD4+ T cell depletion may impact the outcome of infection. This modelling demonstrates that the rapid proliferation of CD4+ T cells in humans and macaques associated with low CD4+ T cell levels can act to ‘fuel the fire’ of infection by providing more proliferating cells for infection. Natural host species, on the other hand, have limited proliferation of CD4+ T cells at low CD4+ T cell levels, which allows them to restrict the number of proliferating cells susceptible to infection.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1.3-1
Author(s):  
R. Kumar ◽  
N. Yoosuf ◽  
A. Bartoletti ◽  
A. Avik ◽  
B. Raposo ◽  
...  

Background:ANCA-associated vasculitis (AAV) with proteinase 3 (PR3) ANCA is genetically associated with HLA-DP [1], is often relapsing in nature, and has a predisposition for kidneys, lungs and ear-nose-throat involvement [2]. Despite the presence of PR3+ANCA, indicating CD4+T-cell help in the disease, the knowledge about autoreactive CD4+T cells is scarce. Activated T cells have been shown at site of inflammation [3] and involvement of proinflammatory cytokines in circulation is also reported [4, 5].Objectives:Identification of autoreactive T cells may help to identify the drivers of the immune responses and chronicity. We therefore aimed to investigate PR3-specific CD4+T-cell responses in peripheral blood of AAV patients with a focus on both phenotype and T-cell receptor (TCR) repertoires.Methods:The study included sixty-six patients: 26 with active PR3 autoantibody+ AAV, 21 with inactive but PR3+ AAV and 19 with inactive PR3- AAV. In-vitro cultures with PR3 protein were established to assess antigen-specific cytokine responses in a 3-color fluorospot assay. Deep immunophenotyping was performed by flow cytometry. Antigen-responsive CD4+ T cells were isolated and single cell TCRαβ sequences were generated and analyzed from PR3+ AAV patients (n=5) using a previously published protocol [6].Results:PBMCs from AAV patients demonstrated an HLA-DP associated cytokine responses to PR3 stimulation including IFN-γ and IL-10, but not IL-17A. This T-cell autoreactivity was found to be confined to a highly differentiated CD4+ T cell population characterized by perforin and GPR56 expression, implicating a cytotoxic feature of the response. Active disease involved a reduction in expression of several markers associated with cytotoxicity amongst the CD4+GPR56+ T cells. Their frequency was also negatively associated with the doses of prednisolone. A similar phenotype was shared with T cells activated by human cytomegalovirus (HCMV) peptides in the same patient cohort. Single cell sequencing of paired alpha beta T-cell receptors (TCRs) revealed different patterns of gene usage between PR3 and HCMV reactive T cells. Moreover, we could identify shared (public) PR3-reactive T-cell clones between different HLA-DPB1*04:01+ patients.Conclusion:PR3 is an autoantigen which provokes ANCA responses in AAV patients. Our study identified PR3-reactive CD4+ T cells at the level of their phenotype and TCR repertoire. The autoreactive CD4+ T cells, present in both active and inactive disease, implicate chronic antigen exposure and the persistence of long-lived T-cell clones. The presence of public autoreactive clones between HLA-DPB1*04:01+ patients suggests an active role for these cells in pathogenesis of AAV and validates the link with predisposed genotype.References:[1]Lyons PA, Rayner TF, Trivedi S, Holle JU, Watts RA, Jayne DR, et al. Genetically distinct subsets within ANCA-associated vasculitis. New England Journal of Medicine. 2012; 367(3):214-223.[2]Kumar Sharma R, Lövström B, Gunnarsson I, Malmström V. Proteinase 3 autoreactivity in Anti-Neutrophil Cytoplasmic Antibody-associated vasculitis–immunological versus clinical features. Scandinavian Journal of Immunology. 2020:e12958.[3]Wilde B, Thewissen M, Damoiseaux J, van Paassen P, Witzke O, Tervaert JWCJAr, et al. T cells in ANCA-associated vasculitis: what can we learn from lesional versus circulating T cells? 2010; 12(1):204.[4]Hoffmann JC, Patschan D, Dihazi H, Müller C, Schwarze K, Henze E, et al. Cytokine profiling in anti neutrophil cytoplasmic antibody-associated vasculitis: a cross-sectional cohort study. Rheumatology international. 2019; 39(11):1907-1917.[5]Berti A, Warner R, Johnson K, Cornec D, Schroeder D, Kabat B, et al. Circulating Cytokine Profiles and ANCA Specificity in Patients with ANCA-Associated Vasculitis. Arthritis & rheumatology (Hoboken, NJ). 2018; 70(7):1114.[6]Han A, Glanville J, Hansmann L, Davis MM. Linking T-cell receptor sequence to functional phenotype at the single-cell level. Nature biotechnology. 2014; 32(7):684-692.Disclosure of Interests:None declared


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3323-3323
Author(s):  
Yan Huang ◽  
Peifang Jiang ◽  
Jiazheng Li ◽  
Yanxin Chen ◽  
Zhengjun Wu ◽  
...  

Abstract Background Adult T-cell leukemia-lymphoma (ATL) is an aggressive mature T-cell neoplasm caused by human T -cell leukemia virus type 1 (HTLV-1). Up to 5% of infected individuals develop to ATL. HTLV-1 preferentially infects CD4 + T cells, and stimulates cell proliferation and prevents cell death by apoptosis. The viral oncogene-encoded proteins, Tax and HBZ, play important roles in viral infection and cell immortalization. However, the host factor of developing from carrier to patient is not clear. Results To characterize the heterogeneity of ATL patients, we performed single-cell RNA-sequencing (10x Genomics) analysis on single cell suspensions isolated from PBMCs of nine samples, including three ATL patients, three HTLV-1 asymptomatic carriers as well as three healthy donors (HD). We acquired 82977 high-quality cells with a median of 1718 genes detected per cell. Unsupervised clustering using Seurat followed by visualization in t-Stochastic Neighbor Embedding (t-SNE) identified 29 distinct cell clusters (Figure 1A). The single cell profiling of ATL patients were significantly different from that of carriers and healthy donors, while the latter two had little difference (Figure 1B). Based on singleR packages and marker genes of each cluster, 4 major cell populations (T cells, NK cells, B cells and myeloid cells) and other rare cell types were annotated, such as erythrocyte cluster and eosinophils cluster. We observed an enrichment of CD4 + T cell from patients in 4 cluster (Figure 1C), which proportion of cells was higher than that of carriers and healthy donors. According to cell type annotation, cells from cluster 11 were CD4 + CD25 + Foxp3 + Treg cells. Based on the increasing proportion of cluster 11 in healthy people, carriers and patients, without significant statistical differences, we assumed that Foxp3 + Treg cells were involved in the evolution of ATL tumor cells. That was identical with published literatures. To investigate the differences between tumor and normal CD4 + T cell, the gene expression was compared among 7 clusters of CD4 + T cell from three groups. Using a threshold of p value < 0.05 and | fold change| >2. Through integrated analysis, we identified 26 commonly upregulated genes (gene expression level: patients > carriers > HD) and 9 downregulated genes (gene expression level: patients < carriers < HD. To further analyze the biological function of the common DEGs, gene ontology (GO) analysis showed that these genes could be mainly categorized into plasma membrane and protein binding. Subsequently, we validated the mRNA expression level of upregulated common DEGs among three groups by qRT-PCR. The isolated CD4 + T cell using CD4 microbeads of a total of 6 patients, 3 carriers and 9 normal specimens were included. The result showed that the mRNA expression levels of gene CADM1 and RGS13 in patients were higher than those in carriers and healthy donors, although there was no statistical difference between patients and carriers, and the expression levels of carriers tended to be higher than those in normal people (Figure 1D and E). Previously, CADM1 has been revealed to be highly expressed in HTLV-1-infected CD4 + T cells. Our study confirmed this result by single-cell profiling. RGS13, a member of the regulators of G protein signaling (RGS) family, participates in cellular communication. The role of RGS13 in ATL needs to be investigated. Conclusions This study is the first time to analyze the single-cell RNA level of ATL patients, HTLV-1 virus carriers and normal people. The peripheral blood cell composition of the patient is significantly different from that of the carriers and healthy donors, while it is similar between carriers and normal people. CD4 + T cells are the main cell population of patients. The proportion of CD4 + CD25 + Foxp3 + Treg cells increased gradually in healthy people, carriers and patients. DEGs analysis showed that CADM1 and RGS13 were highly expressed in CD4 + T cells of patients, followed by carriers, validated by 18 clinical samples. However, the molecular mechanism of RGS13 in the process from HTLV-1 infection to ATL needs to be further studied. Figure 1 Figure 1. Disclosures Hu: Astellas Pharma, Inc.: Research Funding.


Immuno ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 277-284
Author(s):  
Anastasiia Yu. Filatova ◽  
Alexandra V. Potekhina ◽  
Tatiana I. Arefieva

Background. We aimed to analyze the contents of the main CD4+ T-cell subsets in patients with atherosclerosis (AS) depending on age. Methods. Male patients with coronary and/or carotid AS, who are non-smokers, and who are receiving statins were divided into three age groups (I—<55 y.o. (n = 23), II—55–64 y.o. (n = 42), III—≥65 y.o. (n = 46)). Leukocyte phenotyping was performed by direct immunofluorescence and flow cytometry. For intracellular cytokine detection, blood mononuclear cells were pre-activated with phorbol 12-myristate 13-acetate and ionomycin in the presence of an intracellular vesicle transport blocker monensin. Results. The groups did not differ in traditional CVD risk factors and AS severity. The content of CD4+ T-cells was lower in group III and II than in group I. The content of CD4+CD25high Treg was lower in group III than in groups I and II. No differences in the quantities of the primed CD39+CD45RA− and CD278high Treg, CD4+INFγ+ Th1, CD4+IL17+ Th17, and CD4+IL17+INFγ+ Th1/17 were observed. There were negative correlations between the values of CD4+ T-cells, CD4+CD45RA+ T-cells, CD4+CD25high Treg, CD4+CD25highCD45RA+ Treg, and age. Conclusion. In patients with AS, the age-related depletion of naive CD4+ T-cells also extends to the regulatory compartment. This phenomenon should be considered when studying the impact of the immune cells on the progression of AS.


2016 ◽  
Vol 213 (8) ◽  
pp. 1589-1608 ◽  
Author(s):  
Cindy S. Ma ◽  
Natalie Wong ◽  
Geetha Rao ◽  
Akira Nguyen ◽  
Danielle T. Avery ◽  
...  

Naive CD4+ T cells differentiate into specific effector subsets—Th1, Th2, Th17, and T follicular helper (Tfh)—that provide immunity against pathogen infection. The signaling pathways involved in generating these effector cells are partially known. However, the effects of mutations underlying human primary immunodeficiencies on these processes, and how they compromise specific immune responses, remain unresolved. By studying individuals with mutations in key signaling pathways, we identified nonredundant pathways regulating human CD4+ T cell differentiation in vitro. IL12Rβ1/TYK2 and IFN-γR/STAT1 function in a feed-forward loop to induce Th1 cells, whereas IL-21/IL-21R/STAT3 signaling is required for Th17, Tfh, and IL-10–secreting cells. IL12Rβ1/TYK2 and NEMO are also required for Th17 induction. Strikingly, gain-of-function STAT1 mutations recapitulated the impact of dominant-negative STAT3 mutations on Tfh and Th17 cells, revealing a putative inhibitory effect of hypermorphic STAT1 over STAT3. These findings provide mechanistic insight into the requirements for human T cell effector function, and explain clinical manifestations of these immunodeficient conditions. Furthermore, they identify molecules that could be targeted to modulate CD4+ T cell effector function in the settings of infection, vaccination, or immune dysregulation.


2020 ◽  
Author(s):  
Menghua Lyu ◽  
Shiyu Wang ◽  
Kai Gao ◽  
Longlong Wang ◽  
Bin Li ◽  
...  

AbstractCD4 T cell is crucial in CMV infection, but its role is still unclear during this process. Here, we present a single-cell RNA-seq together with T cell receptor (TCR) sequencing to screen the heterogenicity and potential function of CMV pp65 reactivated CD4+ T cell subsets from human peripheral blood, and unveil their potential interactions. Notably, Treg composed the major part of these reactivated cells. Treg gene expression data revealed multiple transcripts of both inflammatory and inhibitory functions. Additionally, we describe the detailed phenotypes of CMV-reactivated effector-memory (Tem), cytotoxic T (CTL), and naïve T cells at the single-cell resolution, and implied the direct derivation of CTL from naïve CD4+ T cells. By analyzing the TCR repertoire, we identified a clonality in stimulated Tem and CTLs, and a tight relationship of Tem and CTL showing a large share in TCR. This study provides clues for understanding the function of CD4+ T cells subsets and unveils their interaction in CMV infection, and may promote the development of CMV immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document