scholarly journals Responsiveness of HIV-specific CD4 T cells to PD-1 blockade

Blood ◽  
2011 ◽  
Vol 118 (4) ◽  
pp. 965-974 ◽  
Author(s):  
Filippos Porichis ◽  
Douglas S. Kwon ◽  
Jennifer Zupkosky ◽  
Daniel P. Tighe ◽  
Ashley McMullen ◽  
...  

Abstract Defining the T helper functions impaired by programmed death–1 (PD-1) is crucial for understanding its role in defective HIV control and determining the therapeutic potential of targeting this inhibitory pathway. We describe here the relationships among disease stage, levels of PD-1 expression, and reversibility of CD4 T-cell impairment. PD-L1 blockade in vitro enhanced HIV-specific production of Th0 (IL-2), Th1 (IFN-γ), Th2 (IL-13), and TFH (IL-21) cytokines by CD4 T cells. PD-L1 blockade caused an early increase in cytokine transcription and translation that preceded cell proliferation. Although the impact of PD-L1 blockade on cytokine expression and, to a lesser extent, cell proliferation was associated with markers of disease progression, restoration of cytokine secretion was also observed in most subjects with undetectable viremia. PD-L1 blockade restored cytokine secretion in both PD-1intermediate and PD-1high sorted CD4 T-cell subsets. Compared with PD-1high HIV-specific CD8 T cells, PD-1high HIV-specific CD4 T cells showed lower expression of the inhibitory molecules CD160 and 2B4, demonstrating marked differences in expression of inhibitory receptors between T-cell subsets. These data show that PD-1 impairs HIV-specific T helper responses both by limiting expansion of these cells and by inhibiting effector functions of multiple differentiated CD4 T-cell subsets.

Immuno ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 277-284
Author(s):  
Anastasiia Yu. Filatova ◽  
Alexandra V. Potekhina ◽  
Tatiana I. Arefieva

Background. We aimed to analyze the contents of the main CD4+ T-cell subsets in patients with atherosclerosis (AS) depending on age. Methods. Male patients with coronary and/or carotid AS, who are non-smokers, and who are receiving statins were divided into three age groups (I—<55 y.o. (n = 23), II—55–64 y.o. (n = 42), III—≥65 y.o. (n = 46)). Leukocyte phenotyping was performed by direct immunofluorescence and flow cytometry. For intracellular cytokine detection, blood mononuclear cells were pre-activated with phorbol 12-myristate 13-acetate and ionomycin in the presence of an intracellular vesicle transport blocker monensin. Results. The groups did not differ in traditional CVD risk factors and AS severity. The content of CD4+ T-cells was lower in group III and II than in group I. The content of CD4+CD25high Treg was lower in group III than in groups I and II. No differences in the quantities of the primed CD39+CD45RA− and CD278high Treg, CD4+INFγ+ Th1, CD4+IL17+ Th17, and CD4+IL17+INFγ+ Th1/17 were observed. There were negative correlations between the values of CD4+ T-cells, CD4+CD45RA+ T-cells, CD4+CD25high Treg, CD4+CD25highCD45RA+ Treg, and age. Conclusion. In patients with AS, the age-related depletion of naive CD4+ T-cells also extends to the regulatory compartment. This phenomenon should be considered when studying the impact of the immune cells on the progression of AS.


Cancers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 260
Author(s):  
Myriam Ben Ben Khelil ◽  
Yann Godet ◽  
Syrine Abdeljaoued ◽  
Christophe Borg ◽  
Olivier Adotévi ◽  
...  

Over the past decades, CD4+ T cells have been considered as a supporting actor in the fields of cancer immunotherapy. Until recently, accumulating evidence has demonstrated the critical role of CD4+ T cells during antitumor immunity. CD4+ T cells can either suppress or promote the antitumor cytotoxic CD8+ T cell responses, either in secondary lymphoid organs or in the tumor. In this review, we provide an overview of the multifaceted role of different CD4+ T cell subsets in cancer immune response and their contribution during cancer therapies. Specifically, we focus on the latest progress regarding the impact of CD4+ T cell modulation on immunotherapies and other cancer therapies and discuss the prospect for harnessing CD4+ T cells to control tumor progression and prevent recurrence in patients.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2233-2233
Author(s):  
Shahram Kordasti ◽  
Judith C. W. Marsh ◽  
Pilar Perez Abellan ◽  
Sufyan Alkhan ◽  
Janet Hayden ◽  
...  

Abstract Abstract 2233 Introduction: Autoimmunity is an important contributor in the aetiology of AA. Although the expansion of oligoclonal CD8+ T-cells and their correlation with response to immunosuppressive therapy (IST) has been reported previously, the role of CD4+ in the pathogenesis is not elucidated. The focus of this study was to investigate the role of different CD4+ T-cell subsets, including regulatory T-cells (Tregs) and T helpers (Th1, Th2 and Th17) in the pathobiology of idiopathic AA. Patients and Methods: The percentage and absolute numbers of CD4+ and CD8+ T-cell subsets, NK & B cells and dendritic cells (DCs) in peripheral blood were assessed in 42 patients with idiopathic AA prior to any IST and 8 healthy age matched controls. T-cells were stimulated first and stained intracellularly for IFN-γ and TNF-a (Th1), IL-4 (Th2) and IL-17 (Th17). Serum levels of 30 cytokines were measured by 30 Plex bead analysis (Luminex). NK cells were defined as CD3– CD56+. B cells were defined as CD3-CD19+. CD3+ CD4+.T-cell subsets were defined as CD45RO–CD27+ naïve, CD45RO+ CD27+ CD62L+ central memory, CD45RO+ CD27+ CD62L– effector memory, CD45RO+CD27– effectors and CD45RO– CD27– terminal effectors. DCs were defined based on their BDCA 1,2, 3 & CD16 expression. CD4 Tregs were defined as CD3+CD4+ CD25high CD27+Foxp3+. Treg subsets were defined as (1) CD45RA+CD25lo resting Tregs, (2) CD45RA-CD25hi activated Tregs, and (3) cytokine-secreting CD45RA-CD25lo non-Tregs1. Treg function was evaluated by cytokine secretion of T effector cells (Te) with and without Tregs. IFN-γ secreting CD4+ T-cells (Th1) were enriched by magnetic beads followed by FACS sorting. The clonality of Th1 cells was evaluated based on the diversity of T-cell receptors by spectratyping as well as sequencing. Transcription factor expression was measured by qPCR. Results: There were no significant differences in the number or percentage of different CD8 T-cells compared to healthy controls. Surprisingly, despite a borderline decrease in the absolute number of naïve (p=0.19) and central memory (p=0.20) CD4+T-cells the number and percentage of Tregs were no different from healthy controls (1.36×107/L v 1.34×107/L, p=0.57). Although the ratio of Tregs to CD4+ T-effectors (Te) was higher than in healthy controls, the difference was not significant (0.49 v 0.12, p=0.86). The absolute numbers and percentages of Th1 cells and TNF-α + CD4+ T-cells were significantly higher in AA patients compared to healthy controls (4.2 × 107/L v 0.9 × 107/L & 2.44 × 108 v 1.26 × 108(p=0.001, p=0.004)). The diversity of T-cell receptor on Th1 cells was significantly lower compared to healthy age matched controls (on average 21 & 52 peaks). Amongst AA patients, the numbers of Th2, Th17, NK and B cells were not significantly different from healthy controls, whereas the absolute numbers of all DCs were reduced(p<0.01). The serum levels of proliferative cytokines, EGF (p=0.01), HGF (p=0.01), VEGF (p=0.01) and pro-inflammatory cytokines IL-13 (p=0.02), IL-8 (p<0.001) were significantly higher in AA patients. The percentage of cytokine secreting CD4+ CD25+ T-cells was markedly decreased in AA patients and the activated Treg subsets were predominantly of CD45RA+ phenotype, which was significantly different from healthy controls. Sorted Tregs from AA patients were unable to suppress cytokine secretion by Te cells in a 1:1 co-culture. However, IL-2, IFN-γ and TNF-α secretion of Te from AA patients was suppressible by allogeneic Tregs from healthy controls (on average 11 time suppression), whereas Tregs from AA patients were unable to suppress healthy Te cells. However, dysfunctional Tregs were not associated with abnormality of transcription factors, as judged by the levels of STAT1, 3, 4, 5 & 6, FoxP3 & T-bet of Tregs that were not significantly different from healthy age matched controls. Conclusion: Our data show that although FoxP3+ Tregs are normal in AA, a subset of these cells is markedly reduced and the activated Tregs aberrantly express CD45RA. Furthermore, unlike normal Tregs, the Tregs from AA patients do not suppress the inflammatory cytokine secretion by Te cells. The absence of DCs in the peripheral blood suggests their immigration to the inflammation site (e.g. bone marrow), which may play a role in the polarisation of T helpers toward a Th1 phenotype. Clonal expansion of Th1 cells may suggest potential antigen specificity that may lead to AA phenotype. 1. Miyara M, et al. Immunity. 2009. Disclosures: No relevant conflicts of interest to declare.


Immuno ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 119-131
Author(s):  
Jana Palmowski ◽  
Kristina Gebhardt ◽  
Thomas Reichel ◽  
Torsten Frech ◽  
Robert Ringseis ◽  
...  

CD4+ T cells are sensitive to peripheral changes of cytokine levels and metabolic substrates such as glucose and lactate. This study aimed to analyze whether factors released after exercise alter parameters of human T cell metabolism, specifically glycolysis and oxidative phosphorylation. We used primary human CD4+ T cells activated in the presence of autologous serum, which was collected before (CO) and after a 30-min exercise intervention (EX). In the course of activation, cells and supernatants were analyzed for cell viability and diameter, real-time oxygen consumption by using PreSens Technology, mRNA expression of glycolytic enzymes and complexes of the electron transport chain by real-time PCR, glucose, and lactate levels in supernatants, and in vitro differentiation by flow cytometry. EX did not alter T cell phenotype, viability, or on-blast formation. Similarly, no difference between CO and EX were found for CD4+ T cell activation and cellular oxygen consumption. In contrast, higher levels of glucose were found after 48 h activation in EX conditions. T cells activated in autologous exercise serum expressed lower HK1 mRNA and higher IFN-γ receptor 1. We suggest that the exercise protocol used was not sufficient to destabilize the immune metabolism of T cells. Therefore, more intense and prolonged exercise should be used in future studies.


2020 ◽  
Vol 117 (32) ◽  
pp. 19408-19414 ◽  
Author(s):  
Michael P. Crawford ◽  
Sushmita Sinha ◽  
Pranav S. Renavikar ◽  
Nicholas Borcherding ◽  
Nitin J. Karandikar

Untoward effector CD4+ T cell responses are kept in check by immune regulatory mechanisms mediated by CD4+ and CD8+ T cells. CD4+ T helper 17 (Th17) cells, characterized by IL-17 production, play important roles in the pathogenesis of autoimmune diseases (such as arthritis, multiple sclerosis, psoriasis, inflammatory bowel disease, among others) and in the host response to infection and cancer. Here, we demonstrate that human CD4+ T cells cells exposed to a Th17-differentiating milieu are significantly more resistant to immune suppression by CD8+ T cells compared to control Th0 cells. This resistance is mediated, in part, through the action of IL-17A, IL-17F, and IL-17AF heterodimer through their receptors (IL-17RA and IL-17RC) on CD4+ T cells themselves, but not through their action on CD8+ T cells or APC. We further show that IL-17 can directly act on non-Th17 effector CD4+ T cells to induce suppressive resistance, and this resistance can be reversed by blockade of IL-1β, IL-6, or STAT3. These studies reveal a role for IL-17 cytokines in mediating CD4-intrinsic immune resistance. The pathways induced in this process may serve as a critical target for future investigation and immunotherapeutic intervention.


2009 ◽  
Vol 206 (10) ◽  
pp. 2111-2119 ◽  
Author(s):  
Ning Lu ◽  
Yi-Hong Wang ◽  
Yui-Hsi Wang ◽  
Kazuhiko Arima ◽  
Shino Hanabuchi ◽  
...  

Whether thymic stromal lymphopoietin (TSLP) directly induces potent human CD4+ T cell proliferation and Th2 differentiation is unknown. We report that resting and activated CD4+ T cells expressed high levels of IL-7 receptor a chain but very low levels of TSLP receptor (TSLPR) when compared with levels expressed in myeloid dendritic cells (mDCs). This was confirmed by immunohistology and flow cytometry analyses showing that only a subset of mDCs, with more activated phenotypes, expressed TSLPR in human tonsils in vivo. IL-7 induced strong STAT1, -3, and -5 activation and promoted the proliferation of naive CD4+ T cells in the presence of anti-CD3 and anti-CD28 monoclonal antibodies, whereas TSLP induced weak STAT5 activation, associated with marginally improved cell survival and proliferation, but failed to induce cell expansion and Th2 differentiation. The effect of TSLP on enhancing strong human T cell proliferation was observed only when sorted naive CD4+ T cells were cultured with mDCs at levels as low as 0.5%. TSLP could only induce naive CD4+ T cells to differentiate into Th2 cells in the presence of allogeneic mDCs. These results demonstrate that IL-7 and TSLP use different mechanisms to regulate human CD4+ T cell homeostasis.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 300 ◽  
Author(s):  
Konstantina Antoniou ◽  
Fanny Ender ◽  
Tillman Vollbrandt ◽  
Yves Laumonnier ◽  
Franziska Rathmann ◽  
...  

Activation of the C5/C5a/C5a receptor 1 (C5aR1) axis during allergen sensitization protects from maladaptive T cell activation. To explore the underlying regulatory mechanisms, we analyzed the impact of C5aR1 activation on pulmonary CD11b+ conventional dendritic cells (cDCs) in the context of house-dust-mite (HDM) exposure. BALB/c mice were intratracheally immunized with an HDM/ovalbumin (OVA) mixture. After 24 h, we detected two CD11b+ cDC populations that could be distinguished on the basis of C5aR1 expression. C5aR1− but not C5aR1+ cDCs strongly induced T cell proliferation of OVA-reactive transgenic CD4+ T cells after re-exposure to antigen in vitro. C5aR1− cDCs expressed higher levels of MHC-II and CD40 than their C5aR1+ counterparts, which correlated directly with a higher frequency of interactions with cognate CD4+ T cells. Priming of OVA-specific T cells by C5aR1+ cDCs could be markedly increased by in vitro blockade of C5aR1 and this was associated with increased CD40 expression. Simultaneous blockade of C5aR1 and CD40L on C5aR1+ cDCs decreased T cell proliferation. Finally, pulsing with OVA-induced C5 production and its cleavage into C5a by both populations of CD11b+ cDCs. Thus, we propose a model in which allergen-induced autocrine C5a generation and subsequent C5aR1 activation in pulmonary CD11b+ cDCs promotes tolerance towards aeroallergens through downregulation of CD40.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3887-3887
Author(s):  
Arnob Banerjee ◽  
Felix Schambach ◽  
Scott Hammond ◽  
Steven Reiner

Abstract Micro-RNAs comprise a class of small noncoding RNAs which have been found to be important regulators of cellular differentiation in multiple species. Previous analysis of micro-RNA expression in the murine hematopoietic system has suggested a role in cell differentiation and the maintenance of cell identity. Naïve progenitor CD4+ T cells respond to a combination of appropriate antigen and other specific signals by undergoing proliferation and further differentiation into one of at least two subsets. T helper 1 (TH1) cells produce high levels of the cytokine IFN-γ and T helper 2 (TH2) cells produce high levels of IL-4, optimizing them for control of intracellular and extracellular pathogens, respectively. It is currently not known whether micro-RNA molecules influence CD4+ T cell differentiation. We have used oligonucleotide arrays to analyze micro-RNA expression profiles of freshly isolated murine CD4+ T cells compared to cells differentiating into TH1 and TH2 subsets. Expression profiles were found to differ significantly between naïve and stimulated CD4+ cells, with fewer differences between TH1 and TH2 subsets. Promising candidate micro-RNAs are being further evaluated by northern blot and genetic studies. Micro-RNA-155 is upregulated on stimulation of CD4+ T cells in multiple oligonucleotide array assays. Micro-RNA-155 is encoded by the BIC oncogene and has been implicated in lymphomagenesis as well as in other malignancies. We have verified the induction of micro-RNA-155 in stimulated helper T cells by northern blot and are studying the effects of this micro-RNA on CD4+ T cell differentiation. Our observations support a role for micro-RNAs in helper T cell differentiation during the immune response.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3684-3684
Author(s):  
Matthew J Ahearne ◽  
Kaljit S Bhuller ◽  
Roger Hew ◽  
Giovanna Roncador ◽  
Martin J.S. Dyer ◽  
...  

Abstract Abstract 3684 CD4+ T-cells can be distinguished into subsets on the basis of surface marker expression and growth factor production. Follicular helper T-cells (Tfh cells) are characterized by the co-expression of surface markers (CD4, ICOS, PD1 and CXCR5) and nuclear BCL6. Normal germinal centre formation requires Tfh cells but is repressed by another CD4+ T-cell subset, Tregs, (demonstrating CD4 and CD25 expression with nuclear FoxP3). The numbers and architecture of infiltrating T-cells predict clinical outcome in follicular lymphoma but although T-cells are a component of diffuse large B cell lymphoma (DLBCL), the relative numbers of CD4+ T-cells and their Tfh and Treg subsets or their association with clinical outcome is not known. We used immunohistochemistry to investigate infiltration by total CD4+, Treg and Tfh cells in cases (n=23) from one centre. The male:female was 1.3:1.0, the age range was 30 to 78 years (median 65 years) and the anticipated association between overall survival and LDH (logrank test, P=0.02) was observed. Patients were treated with R-CHOP with a 21-day cycle. Histological sections were stained with anti-CD4, anti-PD1 and anti-FoxP3 antibodies. For each antibody the area of staining was measured using ImageJ software from 10 high power fields from the same area of each histological section. Tfh cells were identified by strong surface expression of PD1 and Tregs by nuclear expression of FoxP3. CD4+ T-cell infiltration varied by ∼50-fold, and could be diffuse or focal. In 13 cases (57%) the majority of CD4+ T-cells were neither FoxP3+ nor PD1+. Total CD4+ T-cell numbers were positively correlated with FoxP3 (P=0.04) (Figure 1) and with PD1 (P=0.009) (Figure 2) expressing cells suggesting that these subsets were expanded as part of a reaction to the lymphoma capable of stimulating several CD4+ T-cell subsets. High CD4+ (Figure 3) and PD1+ staining predicted good clinical outcome (logrank test, P=0.08) with median survival not being reached at 5 years, but the amount of FoxP3+ staining appeared to be a superior prognostic marker (logrank test, P=0.0069) (Figure 4). There was no association between the cell of origin classification of DLBCL (GCB or ABC) as defined immunohistochemically, and CD4, FoxP3 or PD1 expression. In summary, we have shown that numbers of infiltrating CD4+ T-cells vary between cases of DLBCL and comprises several T-cell subsets including Treg and Tfh cells. No consensus has been reached on the clinical significance of FoxP3+ cell infiltration in DLBCL. Whilst some workers have shown FoxP3 to be associated with a good clinical outcome (Tzankov A., et al. 2008; Lee N., et al. 2008), others have not found a relationship to prognosis (Hasselblom S. et al., 2007). Our data shows that the FoxP3+ Treg cell subset is associated with good clinical outcome but surprisingly we found that both increased total CD4+ T-cells and PD1+ Tfh cells also carry a good prognosis. Disclosures: Wagner: Roche: Honoraria.


2000 ◽  
Vol 191 (12) ◽  
pp. 2159-2170 ◽  
Author(s):  
Kevin J. Maloy ◽  
Christoph Burkhart ◽  
Tobias M. Junt ◽  
Bernhard Odermatt ◽  
Annette Oxenius ◽  
...  

To analyze the antiviral protective capacities of CD4+ T helper (Th) cell subsets, we used transgenic T cells expressing an I-Ab–restricted T cell receptor specific for an epitope of vesicular stomatitis virus glycoprotein (VSV-G). After polarization into Th1 or Th2 effectors and adoptive transfer into T cell–deficient recipients, protective capacities were assessed after infection with different types of viruses expressing the VSV-G. Both Th1 and Th2 CD4+ T cells could transfer protection against systemic VSV infection, by stimulating the production of neutralizing immunoglobulin G antibodies. However, only Th1 CD4+ T cells were able to mediate protection against infection with recombinant vaccinia virus expressing the VSV-G (Vacc-IND-G). Similarly, only Th1 CD4+ T cells were able to rapidly eradicate Vacc-IND-G from peripheral organs, to mediate delayed-type hypersensitivity responses against VSV-G and to protect against lethal intranasal infection with VSV. Protective capacity correlated with the ability of Th1 CD4+ T cells to rapidly migrate to peripheral inflammatory sites in vivo and to respond to inflammatory chemokines that were induced after virus infection of peripheral tissues. Therefore, the antiviral protective capacity of a given CD4+ T cell is governed by the effector cytokines it produces and by its migratory capability.


Sign in / Sign up

Export Citation Format

Share Document