scholarly journals YY1 directly interacts with myocardin to repress the triad myocardin/SRF/CArG box-mediated smooth muscle gene transcription during smooth muscle phenotypic modulation

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jian-Pu Zheng ◽  
Xiangqin He ◽  
Fang Liu ◽  
Shuping Yin ◽  
Shichao Wu ◽  
...  

AbstractYin Yang 1 (YY1) regulates gene transcription in a variety of biological processes. In this study, we aim to determine the role of YY1 in vascular smooth muscle cell (VSMC) phenotypic modulation both in vivo and in vitro. Here we show that vascular injury in rodent carotid arteries induces YY1 expression along with reduced expression of smooth muscle differentiation markers in the carotids. Consistent with this finding, YY1 expression is induced in differentiated VSMCs in response to serum stimulation. To determine the underlying molecular mechanisms, we found that YY1 suppresses the transcription of CArG box-dependent SMC-specific genes including SM22α, SMα-actin and SMMHC. Interestingly, YY1 suppresses the transcriptional activity of the SM22α promoter by hindering the binding of serum response factor (SRF) to the proximal CArG box. YY1 also suppresses the transcription and the transactivation of myocardin (MYOCD), a master regulator for SMC-specific gene transcription by binding to SRF to form the MYOCD/SRF/CArG box triad (known as the ternary complex). Mechanistically, YY1 directly interacts with MYOCD to competitively displace MYOCD from SRF. This is the first evidence showing that YY1 inhibits SMC differentiation by directly targeting MYOCD. These findings provide new mechanistic insights into the regulatory mechanisms that govern SMC phenotypic modulation in the pathogenesis of vascular diseases.

2003 ◽  
Vol 285 (4) ◽  
pp. H1444-H1452 ◽  
Author(s):  
Nihal Kaplan-Albuquerque ◽  
Chrystelle Garat ◽  
Vicki Van Putten ◽  
Raphael A. Nemenoff

Vascular smooth muscle (SM) cells (VSMC) undergo phenotypic modulation in vivo and in vitro. This process involves coordinated changes in expression of multiple SM-specific genes. In cultured VSMC, arginine vasopressin (AVP) increases and PDGF decreases expression of SM α-actin (SMA), the earliest marker of SM cells (SMC). However, it is unknown whether these agents regulate other SM genes in a similar fashion. SM22α appears secondary to SMA during development and is also a marker for SMC. This study examined the regulation of SM22α expression by AVP and PDGF in cultured VSMC. Levels of SM22α mRNA and protein were increased by AVP and suppressed by PDGF. Consistent with these changes, AVP increased SM22α promoter activity, whereas PDGF inhibited basal promoter activity and blocked AVP-induced increase. Activation of both JNK and p38 MAPK pathways was necessary for AVP-mediated induction of SM22α promoter. Expression of constitutively active Ras produced similar suppressions on SM22α promoter activity as PDGF. Signaling relayed from PDGF/Ras activation involved Raf, or a protein that competes for this site, Ral-GDS, and phosphatidylinositol 3-kinase activation. Truncational analysis showed that the proximal location of three CArG boxes in the promoter was sufficient for AVP stimulation. Mutations in this CArG box reduced basal and AVP-stimulated promoter activity without effecting PDGF suppression. Overexpression of serum response factor enhanced basal and AVP-stimulated promoter activity but had no effect on PDGF-BB-induced suppression. These data indicate that AVP and PDGF initiate specific signaling pathways that control expression of multiple SM genes leading to phenotypic modulation.


2009 ◽  
Vol 29 (9) ◽  
pp. 2398-2408 ◽  
Author(s):  
Ping Xie ◽  
Yongna Fan ◽  
Hua Zhang ◽  
Yuan Zhang ◽  
Mingpeng She ◽  
...  

ABSTRACT Myocardin, a coactivator of serum response factor (SRF), plays a critical role in the differentiation of vascular smooth muscle cells (SMCs). However, the molecular mechanisms regulating myocardin stability and activity are not well defined. Here we show that the E3 ligase C terminus of Hsc70-interacting protein (CHIP) represses myocardin-dependent SMC gene expression and transcriptional activity. CHIP interacts with and promotes myocardin ubiquitin-mediated degradation by the proteasome in vivo and in vitro. Furthermore, myocardin ubiquitination by CHIP requires its phosphorylation. Importantly, CHIP overexpression reduces the level of myocardin-dependent SMC contractile gene expression and diminishes arterial contractility ex vivo. These findings for the first time, to our knowledge, demonstrate that CHIP-promoted proteolysis of myocardin plays a key role in the physiological control of SMC phenotype and vessel tone, which may have an important implication for pathophysiological conditions such as atherosclerosis, hypertension, and Alzheimer's disease.


2007 ◽  
Vol 293 (6) ◽  
pp. C1824-C1833 ◽  
Author(s):  
Nicole E. Hastings ◽  
Michael B. Simmers ◽  
Oliver G. McDonald ◽  
Brian R. Wamhoff ◽  
Brett R. Blackman

Atherosclerosis is an inflammatory disease that preferentially forms at hemodynamically compromised regions of altered shear stress patterns. Endothelial cells (EC) and smooth muscle cells (SMC) undergo phenotypic modulation during atherosclerosis. An in vitro coculture model was developed to determine the role of hemodynamic regulation of EC and SMC phenotypes in coculture. Human ECs and SMCs were plated on a synthetic elastic lamina and human-derived atheroprone, and atheroprotective shear stresses were imposed on ECs. Atheroprone flow decreased genes associated with differentiated ECs (endothelial nitric oxide synthase, Tie2, and Kruppel-like factor 2) and SMCs (smooth muscle α-actin and myocardin) and induced a proinflammatory phenotype in ECs and SMCs (VCAM-1, IL-8, and monocyte chemoattractant protein-1). Atheroprone flow-induced changes in SMC differentiation markers were regulated at the chromatin level, as indicated by decreased serum response factor (SRF) binding to the smooth muscle α-actin-CC(a/T)6GG (CArG) promoter region and decreased histone H4 acetylation. Conversely, SRF and histone H4 acetylation were enriched at the c- fos promoter in SMCs. In the presence of atheroprotective shear stresses, ECs aligned with the direction of flow and SMCs aligned more perpendicular to flow, similar to in vivo vessel organization. These results provide a novel mechanism whereby modulation of the EC phenotype by hemodynamic shear stresses, atheroprone or atheroprotective, play a critical role in mechanical-transcriptional coupling and regulation of the SMC phenotype.


2004 ◽  
Vol 16 (2) ◽  
pp. 87 ◽  
Author(s):  
Le Ann Blomberg ◽  
Kurt A. Zuelke

Functional genomics provides a powerful means for delving into the molecular mechanisms involved in pre-implantation development of porcine embryos. High rates of embryonic mortality (30%), following either natural mating or artificial insemination, emphasise the need to improve the efficiency of reproduction in the pig. The poor success rate of live offspring from in vitro-manipulated pig embryos also hampers efforts to generate transgenic animals for biotechnology applications. Previous analysis of differential gene expression has demonstrated stage-specific gene expression for in vivo-derived embryos and altered gene expression for in vitro-derived embryos. However, the methods used to date examine relatively few genes simultaneously and, thus, provide an incomplete glimpse of the physiological role of these genes during embryogenesis. The present review will focus on two aspects of applying functional genomics research strategies for analysing the expression of genes during elongation of pig embryos between gestational day (D) 11 and D12. First, we compare and contrast current methodologies that are being used for gene discovery and expression analysis during pig embryo development. Second, we establish a paradigm for applying serial analysis of gene expression as a functional genomics tool to obtain preliminary information essential for discovering the physiological mechanisms by which distinct embryonic phenotypes are derived.


2008 ◽  
Vol 295 (5) ◽  
pp. C1175-C1182 ◽  
Author(s):  
Tadashi Yoshida ◽  
Qiong Gan ◽  
Gary K. Owens

Phenotypic switching of vascular smooth muscle cells (SMCs), such as increased proliferation, enhanced migration, and downregulation of SMC differentiation marker genes, is known to play a key role in the development of atherosclerosis. However, the factors and mechanisms controlling this process are not fully understood. We recently showed that oxidized phospholipids, including 1-palmitoyl-2-(5-oxovaleroyl)- sn-glycero-3-phosphocholine (POVPC), which accumulate in atherosclerotic lesions, are potent repressors of expression of SMC differentiation marker genes in cultured SMCs as well as in rat carotid arteries in vivo. Here, we examined the molecular mechanisms whereby POVPC induces suppression of SMC differentiation marker genes in cultured SMCs. Results showed that POVPC induced phosphorylation of ERK1/2 and Elk-1. The MEK inhibitors U-0126 and PD-98059 attenuated POVPC-induced suppression of smooth muscle ( SM) α-actin and SM-myosin heavy chain. POVPC also induced expression of Krüppel-like factor 4 (Klf4). Chromatin immunoprecipitation assays revealed that POVPC caused simultaneous binding of Elk-1 and Klf4 to the promoter region of the SM α-actin gene. Moreover, coimmunoprecipitation assays showed a physical interaction between Elk-1 and Klf4. Results in Klf4-null SMCs showed that blockade of both Klf4 induction and Elk-1 phosphorylation completely abolished POVPC-induced suppression of SMC differentiation marker genes. POVPC-induced suppression of SMC differentiation marker genes was also accompanied by hypoacetylation of histone H4 at the SM α-actin promoter, which was mediated by the recruitment of histone deacetylases (HDACs), HDAC2 and HDAC5. Coimmunoprecipitation assays showed that Klf4 interacted with HDAC5. Results provide evidence that Klf4, Elk-1, and HDACs coordinately mediate POVPC-induced suppression of SMC differentiation marker genes.


2020 ◽  
Vol 21 (17) ◽  
pp. 6334
Author(s):  
Rijan Gurung ◽  
Andrew Mark Choong ◽  
Chin Cheng Woo ◽  
Roger Foo ◽  
Vitaly Sorokin

Abdominal aortic aneurysm (AAA) refers to the localized dilatation of the infra-renal aorta, in which the diameter exceeds 3.0 cm. Loss of vascular smooth muscle cells, degradation of the extracellular matrix (ECM), vascular inflammation, and oxidative stress are hallmarks of AAA pathogenesis and contribute to the progressive thinning of the media and adventitia of the aortic wall. With increasing AAA diameter, and left untreated, aortic rupture ensues with high mortality. Collective evidence of recent genetic and epigenetic studies has shown that phenotypic modulation of smooth muscle cells (SMCs) towards dedifferentiation and proliferative state, which associate with the ECM remodeling of the vascular wall and accompanied with increased cell senescence and inflammation, is seen in in vitro and in vivo models of the disease. This review critically analyses existing publications on the genetic and epigenetic mechanisms implicated in the complex role of SMCs within the aortic wall in AAA formation and reflects the importance of SMCs plasticity in AAA formation. Although evidence from the wide variety of mouse models is convincing, how this knowledge is applied to human biology needs to be addressed urgently leveraging modern in vitro and in vivo experimental technology.


2001 ◽  
Vol 100 (3) ◽  
pp. 275-281 ◽  
Author(s):  
Michiya IGASE ◽  
Takafumi OKURA ◽  
Michitsugu NAKAMURA ◽  
Yasunori TAKATA ◽  
Yutaka KITAMI ◽  
...  

GADD153 (growth arrest- and DNA damage-inducible gene 153) is expressed at very low levels in growing cells, but is markedly induced in response to a variety of cellular stresses, including glucose deprivation, exposure to genotoxic agents and other growth-arresting situations. Forced expression of GADD153 induces cell cycle arrest in many types of cells. It is also reported that GADD153 is directly associated with apoptosis. Recently we have reported that platelet-derived growth factor (PDGF)-BB induces apoptosis in cultured vascular smooth muscle cells (VSMC), but only when 100% confluency is reached. These results suggested that cell–cell contact inhibition (cell growth arrest) may be a critical factor for induction of VSMC apoptosis by PDGF-BB. In the present study, we explored the role of GADD153, one of a number of growth-arrest-related gene products, in the molecular mechanisms of VSMC apoptosis in vitro and in vivo. GADD153 was markedly induced at both the mRNA and protein levels, in parallel with the induction of VSMC apoptosis, after treatment with PDGF-BB. Moreover, overexpression of GADD153 in VSMC significantly reduced cell viability and induced apoptosis. In the carotid artery balloon injury model in rats, GADD153 protein was expressed in apoptotic VSMC which were positively stained by in situ DNA labelling. These results demonstrate an important role for GADD153 in the molecular mechanisms of VSMC apoptosis.


Author(s):  
Wenwu Zhang ◽  
Susan J. Gunst

The smooth muscle of the airways is exposed to continuously changing mechanical forces during normal breathing. The mechanical oscillations that occur during breathing have profound effects on airway tone and airway responsiveness both in experimental animals and humans in vivo and in isolated airway tissues in vitro. Experimental evidence suggests that alterations in the contractile and mechanical properties of airway smooth muscle tissues caused by mechanical perturbations result from adaptive changes in the organization of the cytoskeletal architecture of the smooth muscle cell. The cytoskeleton is a dynamic structure that undergoes rapid reorganization in response to external mechanical and pharmacologic stimuli. Contractile stimulation initiates the assembly of cytoskeletal/extracellular matrix adhesion complex proteins into large macromolecular signaling complexes (adhesomes) that undergo activation to mediate the polymerization and reorganization of a submembranous network of actin filaments at the cortex of the cell. Cortical actin polymerization is catalyzed by Neuronal-Wiskott–Aldrich syndrome protein (N-WASP) and the Arp2/3 complex, which are activated by pathways regulated by paxillin and the small GTPase, cdc42. These processes create a strong and rigid cytoskeletal framework that may serve to strengthen the membrane for the transmission of force generated by the contractile apparatus to the extracellular matrix, and to enable the adaptation of smooth muscle cells to mechanical stresses. This model for the regulation of airway smooth muscle function can provide novel perspectives to explain the normal physiologic behavior of the airways and pathophysiologic properties of the airways in asthma.


2008 ◽  
Vol 19 (4) ◽  
pp. 1354-1365 ◽  
Author(s):  
Mohua Banerjee ◽  
Delma S. Thompson ◽  
Anna Lazzell ◽  
Patricia L. Carlisle ◽  
Christopher Pierce ◽  
...  

The specific ability of the major human fungal pathogen Candida albicans, as well as many other pathogenic fungi, to extend initial short filaments (germ tubes) into elongated hyphal filaments is important for a variety of virulence-related processes. However, the molecular mechanisms that control hyphal extension have remained poorly understood for many years. We report the identification of a novel C. albicans transcriptional regulator, UME6, which is induced in response to multiple host environmental cues and is specifically important for hyphal extension. Although capable of forming germ tubes, the ume6Δ/ume6Δ mutant exhibits a clear defect in hyphal extension both in vitro and during infection in vivo and is attenuated for virulence in a mouse model of systemic candidiasis. We also show that UME6 is an important downstream component of both the RFG1-TUP1 and NRG1-TUP1 filamentous growth regulatory pathways, and we provide evidence to suggest that Nrg1 and Ume6 function together by a negative feedback loop to control the level and duration of filament-specific gene expression in response to inducing conditions. Our results suggest that hyphal extension is controlled by a specific transcriptional regulatory mechanism and is correlated with the maintenance of high-level expression of genes in the C. albicans filamentous growth program.


1997 ◽  
Vol 17 (2) ◽  
pp. 584-593 ◽  
Author(s):  
J L Lenormand ◽  
B Benayoun ◽  
M Guillier ◽  
M Vandromme ◽  
M P Leibovitch ◽  
...  

The activities of myogenic basic helix-loop-helix (bHLH) factors are regulated by a number of different positive and negative signals. Extensive information has been published about the molecular mechanisms that interfere with the process of myogenic differentiation, but little is known about the positive signals. We previously showed that overexpression of rat Mos in C2C12 myoblasts increased the expression of myogenic markers whereas repression of Mos products by antisense RNAs inhibited myogenic differentiation. In the present work, our results show that the rat mos proto-oncogene activates transcriptional activity of MyoD protein. In transient transfection assays, Mos promotes transcriptional transactivation by MyoD of the muscle creatine kinase enhancer and/or a reporter gene linked to MyoD-DNA binding sites. Physical interaction between Mos and MyoD, but not with E12, is demonstrated in vivo by using the two-hybrid approach with C3H10T1/2 cells and in vitro by using the glutathione S-transferase (GST) pull-down assays. Unphosphorylated MyoD from myogenic cell lysates and/or bacterially expressed MyoD physically interacts with Mos. This interaction occurs via the helix 2 region of MyoD and a highly conserved region in Mos proteins with 40% similarity to the helix 2 domain of the E-protein class of bHLH factors. Phosphorylation of MyoD by activated GST-Mos protein inhibits the DNA-binding activity of MyoD homodimers and promotes MyoD-E12 heterodimer formation. These data support a novel function for Mos as a mediator (coregulator) of muscle-specific gene(s) expression.


Sign in / Sign up

Export Citation Format

Share Document