scholarly journals Deposited ultra-thin titanium nitride nanorod array as a plasmonic near-perfect light absorber

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yi-Jun Jen ◽  
Kai-Bin Yang ◽  
Po-Chun Lin ◽  
Meng-Hsun Chung

AbstractThe transmittance, reflectance, and extinctance that correspond to the localized plasmonic resonance within TiN nanorods were investigated. The obliquely deposited TiN nanorod array shows polarization-independent admittance matching to air. Unlike noble metal nanorods, the near-field localized longitudinal and transverse plasmonic resonance of TiN nanorod arrays present polarization-dependent light extinction in the far field. The longitudinal plasmonic mode presents stronger extinction than transverse plasmonic mode. In order to have high efficient light absorption, an ultra-thin two-layered TiN nanorod array was fabricated with orthogonal deposition planes for upper layer and bottom layer to absorb different polarized light energy. The measured spectrum shows broadband and wide-angle light extinction.

Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 465 ◽  
Author(s):  
Yi-Jun Jen ◽  
Wei-Chien Wang ◽  
Kai-Lun Wu ◽  
Meng-Jie Lin

Plasmonic titanium nitride (TiN) nanorod arrays (NRA) were fabricated by glancing angle deposition in a DC magnetron reactive sputtering system. The morphology of the TiN NRA was varied by collimating the vapor flux. The transmittance, reflectance, and extinctance of slanted TiN nanorods with different lengths as functions of wavelength and angle of incidence were measured and analyzed. The extinction peaks in the spectra reveal the transverse and longitudinal plasmonic modes of TiN NRA upon excitation by s-polarized and p-polarized light, respectively. The near-field simulation was performed to elucidate localized field enhancements that correspond to high extinction. The extension of the high extinction band with an increasing length of the nanorods results in broadband and wide-angle light extinction for a TiN NRA with a thickness greater than 426 nm.


2020 ◽  
Vol 20 (6) ◽  
pp. 3512-3518
Author(s):  
Saleh Khan ◽  
Xiao-He Liu ◽  
Xi Jiang ◽  
Qing-Yun Chen

Highly efficient and effective porous ZnO nanorod arrays were fabricated by annealing ZnO nanorod arrays grown on a substrate using a simple hydrothermal method. The annealing had a positive effect on the nanorod morphology, structure and optical properties. The porosity was closely related to the annealing temperature. After heating at 450 °C, pores appeared on the nanorods. It was demonstrated that the porosity could be exploited to improve the visible light absorption of ZnO and reduce the bandgap from 3.11 eV to 2.99 eV. A combination of improved charge separation and transport of the heat-treated ZnO thus led to an increase in the photoelectrochemical properties. At an irradiation intensity of 100 mW/cm−2, the photocurrent density of the porous nanorod array was approximately 1.3 mA cm−2 at 1.2 V versus Ag/AgCl, which was five times higher than that of the ZnO nanorods. These results revealed the synthesis of promising porous ZnO nanorods for photoelectrochemical applications.


Nanomaterials ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 975 ◽  
Author(s):  
Peizhen Qiu ◽  
Taiguo Lv ◽  
Yupei Zhang ◽  
Binbin Yu ◽  
Jiqing Lian ◽  
...  

Realizing multiple beam shaping functionalities in a single plasmonic device is crucial for photonic integration. Both plasmonic Bessel-like beams and bottle beams have potential applications in nanophotonics, particularly in plasmonic based circuits, near field optical trapping, and micro manipulation. Thus, it is very interesting to find new approaches for simultaneous generation of surface plasmon polariton Bessel-like beams and bottle beams in a single photonic device. Two types of polarization-dependent devices, which consist of arrays of spatially distributed sub-wavelength rectangular slits, are designed. The array of slits are specially arranged to construct an X-shaped or an IXI-shaped array, namely X-shaped device and IXI-shaped devices, respectively. Under illumination of circularly polarized light, plasmonic zero-order and first-order Bessel-like beams can be simultaneously generated on both sides of X-shaped devices. Plasmonic Bessel-like beam and bottle beam can be simultaneously generated on both sides of IXI-shaped devices. By changing the handedness of circularly polarized light, for both X-shaped and IXI-shaped devices, the positions of the generated plasmonic beams on either side of device can be dynamically interchanged.


2010 ◽  
Author(s):  
Hsing-Ying Lin ◽  
Chen-Han Huang ◽  
Chih-Han Chang ◽  
Yun-Chiang Lan ◽  
Hsiang-Chen Chui

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shaobo Li ◽  
Shuming Yang ◽  
Fei Wang ◽  
Qiang Liu ◽  
Biyao Cheng ◽  
...  

Abstract Metallic plasmonic probes have been successfully applied in near-field imaging, nanolithography, and Raman enhanced spectroscopy because of their ability to squeeze light into nanoscale and provide significant electric field enhancement. Most of these probes rely on nanometric alignment of incident beam and resonant structures with limited spectral bandwidth. This paper proposes and experimentally demonstrates an asymmetric fiber tip for broadband interference nanofocusing within its full optical wavelengths (500–800 nm) at the nanotip with 10 nm apex. The asymmetric geometry consisting of two semicircular slits rotates plasmonic polarization and converts the linearly polarized plasmonic mode to the radially polarized plasmonic mode when the linearly polarized beam couples to the optical fiber. The three-dimensional plasmonic modulation induces circumference interference and nanofocus of surface plasmons, which is significantly different from the nanofocusing through plasmon propagation and plasmon evolution. The plasmonic interference modulation provides fundamental insights into the plasmon engineering and has important applications in plasmon nanophotonic technologies.


2018 ◽  
Vol 6 (7) ◽  
pp. 1767-1773 ◽  
Author(s):  
Bing He Xie ◽  
Guang Tao Fei ◽  
Shao Hui Xu ◽  
Xu Dong Gao ◽  
Jun Xi Zhang ◽  
...  

A PbS-based photodetector integrated with ordered Au-nanorod arrays exhibited high wavelength-selective enhancement in the visible and infrared region.


Nanoscale ◽  
2018 ◽  
Vol 10 (17) ◽  
pp. 8106-8114 ◽  
Author(s):  
Renxian Gao ◽  
Yongjun Zhang ◽  
Fan Zhang ◽  
Shuang Guo ◽  
Yaxin Wang ◽  
...  

Hexagonal close-packed tilted Ag nanorod arrays that exhibit excellent uniformity and reproducibility were prepared. The polarization dependence of SERS of nanorod array is fundamentally explained by integrating the experimental and theoretical numerical simulation data.


2016 ◽  
Vol 9 (8) ◽  
pp. 2633-2643 ◽  
Author(s):  
Fanyu Ning ◽  
Mingfei Shao ◽  
Simin Xu ◽  
Yi Fu ◽  
Ruikang Zhang ◽  
...  

TiO2/graphene/NiFe-layered double hydroxide nanorod arrays were fabricated as highly efficient photoanodes for photoelectrochemical water splitting with simultaneously enhanced charge separation and water oxidation efficiency.


2020 ◽  
Vol 72 (4) ◽  
pp. 045502
Author(s):  
Hamim Mahmud Rivy ◽  
M R C Mahdy ◽  
Nabila Masud ◽  
Ziaur Rahman Jony ◽  
Saikat Chandra Das

Sign in / Sign up

Export Citation Format

Share Document