scholarly journals A chemokine-fusion vaccine targeting immature dendritic cells elicits elevated antibody responses to malaria sporozoites in infant macaques

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kun Luo ◽  
James T. Gordy ◽  
Fidel Zavala ◽  
Richard B. Markham

AbstractInfants and young children are the groups at greatest risk for severe disease resulting from Plasmodium falciparum infection. We previously demonstrated in mice that a protein vaccine composed of the chemokine macrophage inflammatory protein 3α genetically fused to the minimally truncated circumsporozoite protein of P. falciparum (MCSP) elicits high concentrations of specific antibody and significant reduction of liver sporozoite load in a mouse model system. In the current study, a squalene based adjuvant (AddaVax, InvivoGen, San Diego, Ca) equivalent to the clinically approved MF59 (Seqiris, Maidenhead, UK) elicited greater antibody responses in mice than the previously employed adjuvant polyinosinic:polycytidylic acid, ((poly(I:C), InvivoGen, San Diego, Ca) and the clinically approved Aluminum hydroxide gel (Alum, Invivogen, San Diego, Ca) adjuvant. Use of the AddaVax adjuvant also expanded the range of IgG subtypes elicited by mouse vaccination. Sera passively transferred into mice from MCSP/AddaVax immunized 1 and 6 month old macaques significantly reduced liver sporozoite load upon sporozoite challenge. Protective antibody concentrations attained by passive transfer in the mice were equivalent to those observed in infant macaques 18 weeks after the final immunization. The efficacy of this vaccine in a relevant non-human primate model indicates its potential usefulness for the analogous high risk human population.

2019 ◽  
Author(s):  
Kun Luo ◽  
James T. Gordy ◽  
Fidel Zavala ◽  
Richard B. Markham

AbstractInfants and young children are the groups at greatest risk for severe disease resulting from Plasmodium falciparum infection. We previously demonstrated in mice that a protein vaccine composed of the chemokine macrophage inflammatory protein 3α genetically fused to the minimally truncated circumsporozoite protein of P. falciparum (MCSP) elicits high concentrations of specific antibody and significant reduction of liver sporozoite load in a mouse model system. In the current study, a squalene based adjuvant (AddaVax, InvivoGen, San Diego, Ca) equivalent to the clinically approved MF59 (Seqiris, Maidenhead, UK) elicited greater antibody responses in mice than the previously employed adjuvant polyinosinic:polycytidylic acid, ((poly(I:C), InvivoGen, San Diego, Ca) and the clinically approved Aluminum hydroxide gel (Alum, Invivogen, San Diego, Ca) adjuvant. Use of the AddaVax adjuvant also expanded the range of IgG subtypes elicited by mouse vaccination. Sera passively transferred into mice from MCSP/AddaVax immunized one and six month old macaques significantly reduced liver sporozoite load upon sporozoite challenge. Protective antibody concentrations attained by passive transfer in the mice were equivalent to those observed in infant macaques 18 weeks after the final immunization. The efficacy of this vaccine in a relevant non-human primate model indicates its potential usefulness for the analogous high risk human population.


Author(s):  
Elene A Clemens ◽  
Beth C Holbrook ◽  
Masaru Kanekiyo ◽  
Jonathan W Yewdell ◽  
Barney S Graham ◽  
...  

Abstract Eliciting broadly protective antibodies is a critical goal for the development of more effective vaccines against influenza. Optimizing protection is of particular importance in newborns, who are highly vulnerable to severe disease following infection. An effective vaccination strategy for this population must surmount the challenges associated with the neonatal immune system as well as mitigate the inherent immune subdominance of conserved influenza virus epitopes, responses to which can provide broader protection. Here, we show that prime-boost vaccination with a TLR7/8 agonist (R848)-conjugated influenza A virus (IAV) vaccine elicits antibody responses to the highly conserved hemagglutinin stem and promotes rapid induction of virus neutralizing stem-specific antibodies following viral challenge. These findings support the efficacy of R848 as an effective adjuvant for newborns and demonstrate its ability to enhance antibody responses to subdominant antigenic sites in this at-risk population.


Author(s):  
Tatsuro Saruga ◽  
Tadaatsu Imaizumi ◽  
Shogo Kawaguchi ◽  
Kazuhiko Seya ◽  
Tomoh Matsumiya ◽  
...  

AbstractC-X-C motif chemokine 10 (CXCL10) is an inflammatory chemokine and a key molecule in the pathogenesis of rheumatoid arthritis (RA). Melanoma differentiation-associated gene 5 (MDA5) is an RNA helicase that plays a role in innate immune and inflammatory reactions. The details of the regulatory mechanisms of CXCL10 production and the precise role of MDA5 in RA synovitis have not been fully elucidated. The aim of this study was to examine the role of MDA5 in regulating CXCL10 expression in cultured human rheumatoid fibroblast-like synoviocytes (RFLS). RFLS was stimulated with Toll-like receptor 3 (TLR3) ligand polyinosinic:polycytidylic acid (poly I:C), a synthetic double-stranded RNA mimetic. Expression of interferon beta (IFN-β), MDA5, and CXCL10 was measured by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blotting, and enzyme-linked immunosorbent assay. A neutralizing antibody of IFN-β and siRNA-mediated MDA5 knockdown were used to determine the role of these molecules in regulating CXCL10 expression downstream of TLR3 signaling in RFLS. Poly I:C induced IFN-β, MDA5, and CXCL10 expression in a concentration- and time-dependent manner. IFN-β neutralizing antibody suppressed the expression of MDA5 and CXCL10, and knockdown of MDA5 decreased a part of CXCL10 expression (p < 0.001). The TLR3/IFN-β/CXCL10 axis may play a crucial role in the inflammatory responses in RA synovium, and MDA5 may be partially involved in this axis.


2021 ◽  
Author(s):  
Mary Gaeddert ◽  
Philip Kitchen ◽  
Tobias Broger ◽  
Stefan Weber ◽  
Ralf Bartenschlager ◽  
...  

AbstractBackgroundAfter infection with severe acute respiratory syndrome coronavirus (SARS-CoV-2), Immunoglobulin G (IgG) antibodies and virus-specific neutralizing antibodies (nAbs) develop. This study describes antibody responses in a cohort of recovered COVID-19 patients to identify predictors.MethodsWe recruited patients with confirmed SARS-CoV-2 infection from Heidelberg, Germany. Blood samples were collected three weeks after COVID-19 symptoms ended. Participants with high antibody titers were invited for follow-up visits. IgG titers were measured by the Euroimmun Assay, and nAbs titers in a SARS-CoV-2 infection-based assay.Results281 participants were enrolled between April and August 2020 with IgG testing, 145 (51.6%) had nAbs, and 35 (12.5%) had follow-up. The median IgG optical density (OD) ratio was 3.1 (Interquartile range (IQR) 1.6-5.1), and 24.1% (35/145) had a nAb titer>1:80. Higher IgG titers were associated with increased age and more severe disease, and higher nAbs were associated with male gender and CT-value of 25-30 on RT-PCR at diagnosis. The median IgG OD ratio on follow-up was 3.7 (IQR 2.9-5.9), a median increase of 0.5 (IQR −0.3-1.7). Six participants with follow-up nAbs all had titers ≤ 1:80.ConclusionsWhile age and disease severity were correlated with IgG responses, predictive factors for nAbs in convalescent patients remain unclear.


Author(s):  
Cathleen A Collins ◽  
Laura Gelinas ◽  
Linda L Yasukawa ◽  
Susette Audet ◽  
Bahaa Abu-Raya ◽  
...  

Abstract In this study, we illustrate, for the first time, that preexisting low-avidity neutralizing measles maternal antibodies do not interfere with the development of high concentrations of high-avidity measles antibodies in children immunized at age 12 months. This suggests that the quality of measles maternal antibodies, rather than the quantity, impacts immunogenicity of primary measles immunization.


Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 277
Author(s):  
Clare Burn Aschner ◽  
Carl Pierce ◽  
David M. Knipe ◽  
Betsy C. Herold

Herpes simplex viruses (HSV) are significant global health problems associated with mucosal and neurologic disease. Prior experimental vaccines primarily elicited neutralizing antibodies targeting glycoprotein D (gD), but those that advanced to clinical efficacy trials have failed. Preclinical studies with an HSV-2 strain deleted in gD (ΔgD-2) administered subcutaneously demonstrated that it elicited a high titer, weakly neutralizing antibodies that activated Fcγ receptors to mediate antibody-dependent cellular cytotoxicity (ADCC), and completely protected mice against lethal disease and latency following vaginal or skin challenge with HSV-1 or HSV-2. Vaccine efficacy, however, may be impacted by dose and route of immunization. Thus, the current studies were designed to compare immunogenicity and efficacy following different routes of vaccination with escalating doses of ΔgD-2. We compared ΔgD-2 with two other candidates: recombinant gD protein combined with aluminum hydroxide and monophosphoryl lipid A adjuvants and a replication-defective virus deleted in two proteins involved in viral replication, dl5-29. Compared to the subcutaneous route, intramuscular and/or intradermal immunization resulted in increased total HSV antibody responses for all three vaccines and boosted the ADCC, but not the neutralizing response to ΔgD and dl5-29. The adjuvanted gD protein vaccine provided only partial protection and failed to elicit ADCC independent of route of administration. In contrast, the increased ADCC following intramuscular or intradermal administration of ΔgD-2 or dl5-29 translated into significantly increased protection. The ΔgD-2 vaccine provided 100% protection at doses as low as 5 × 104 pfu when administered intramuscularly or intradermally, but not subcutaneously. However, administration of a combination of low dose subcutaneous ΔgD-2 and adjuvanted gD protein resulted in greater protection than low dose ΔgD-2 alone indicating that gD neutralizing antibodies may contribute to protection. Taken together, these results demonstrate that ADCC provides a more predictive correlate of protection against HSV challenge in mice and support intramuscular or intradermal routes of vaccination.


2005 ◽  
Vol 73 (4) ◽  
pp. 2515-2523 ◽  
Author(s):  
Adriano L. S. Souza ◽  
Ester Roffê ◽  
Vanessa Pinho ◽  
Danielle G. Souza ◽  
Adriana F. Silva ◽  
...  

ABSTRACT In human schistosomiasis, the concentrations of the chemokine macrophage inflammatory protein 1α (MIP-1α/CCL3) is greater in the plasma of patients with clinical hepatosplenic disease. The objective of the present study was to confirm the ability of CCL3 to detect severe disease in patients classified by ultrasonography (US) and to evaluate the potential role of CCL3 in Schistosoma mansoni-infected mice. CCL3 was measured by enzyme-linked immunosorbent assay in the plasma of S. mansoni-infected patients. CCL3-deficient mice were infected with 25 cercariae, and various inflammatory and infectious indices were evaluated. The concentration of CCL3 was higher in the plasma of S. mansoni-infected than noninfected patients. Moreover, CCL3 was greater in those with US-defined hepatosplenic than with the intestinal form of the disease. In CCL3-deficient mice, the size of the granuloma and the liver eosinophil peroxidase activity and collagen content were diminished compared to wild-type mice. In CCL3-deficient mice, the worm burden after 14 weeks of infection, but not after 9 weeks, was consistently smaller. The in vitro response of mesenteric lymph node cells to antigen stimulation was characterized by lower levels of interleukin-4 (IL-4) and IL-10. CCL3 is a marker of disease severity in infected humans, and experimental studies in mice suggest that CCL3 may be a causative factor in the development of severe schistosomiasis.


2020 ◽  
Vol 9 (1) ◽  
pp. 2091-2093 ◽  
Author(s):  
Pengfei Wang ◽  
Lihong Liu ◽  
Manoj S. Nair ◽  
Michael T. Yin ◽  
Yang Luo ◽  
...  

2019 ◽  
Vol 116 (26) ◽  
pp. 13036-13041 ◽  
Author(s):  
Jesse D. Deere ◽  
W. L. William Chang ◽  
Andradi Villalobos ◽  
Kimberli A. Schmidt ◽  
Ashlesha Deshpande ◽  
...  

Human cytomegalovirus (HCMV) causes severe disease in infants and immunocompromised people. There is no approved HCMV vaccine, and vaccine development strategies are complicated by evidence of both persistent infection and reinfection of people with prior immunity. The greatest emphasis has been placed on reducing transmission to seronegative pregnant women to prevent vertical transmission and its potentially severe sequelae. Increasing evidence suggests that the earliest host–HCMV interactions establish conditions for viral persistence, including evasion of host immune responses to the virus. Using a nonhuman primate model of HCMV infection, we show that rhesus macaques immunized against viral interleukin-10 (IL-10) manifest delayed rhesus cytomegalovirus (RhCMV) acquisition and altered immune responses to the infection when it does occur. Among animals with the greatest antiviral IL-10–neutralizing activity, the timing of RhCMV seroconversion was delayed by an average of 12 weeks. After acquisition, such animals displayed an antibody response to the new infection, which peaked as expected after 2 weeks but then declined rapidly. In contrast, surprisingly, vaccination with glycoprotein B (gB) protein had no discernible impact on these outcomes. Our results demonstrate that viral IL-10 is a key regulator of successful host immune responses to RhCMV. Viral IL-10 is, therefore, an important target for vaccine strategies against cytomegalovirus (CMV). Furthermore, given the immunoregulatory function of viral IL-10, targeting this protein may prove synergistic with other vaccine therapies and targets. Our study also provides additional evidence that the earliest host–CMV interactions can have a significant impact on the nature of persistent infection.


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Yaoyao Zhu ◽  
Shijuan Shan ◽  
Huaping Zhao ◽  
Rongrong Liu ◽  
Hui Wang ◽  
...  

Abstract Background Interferon (IFN) regulatory factors (IRFs), as transcriptional regulatory factors, play important roles in regulating the expression of type I IFN and IFN- stimulated genes (ISGs) in innate immune responses. In addition, they participate in cell growth and development and regulate oncogenesis. Results In the present study, the cDNA sequence of IRF10 in common carp (Cyprinus carpio L.) was characterized (abbreviation, CcIRF10). The predicted protein sequence of CcIRF10 shared 52.7–89.2% identity with other teleost IRF10s and contained a DNA-binding domain (DBD), a nuclear localization signal (NLS) and an IRF-associated domain (IAD). Phylogenetic analysis showed that CcIRF10 had the closest relationship with IRF10 of Ctenopharyngodon idella. CcIRF10 transcripts were detectable in all examined tissues, with the highest expression in the gonad and the lowest expression in the head kidney. CcIRF10 expression was upregulated in the spleen, head kidney, foregut and hindgut upon polyinosinic:polycytidylic acid (poly I:C) and Aeromonas hydrophila stimulation and induced by poly I:C, lipopolysaccharide (LPS) and peptidoglycan (PGN) in peripheral blood leucocytes (PBLs) and head kidney leukocytes (HKLs) of C. carpio. In addition, overexpression of CcIRF10 was able to decrease the expression of the IFN and IFN-stimulated genes PKR and ISG15. Conclusions These results indicate that CcIRF10 participates in antiviral and antibacterial immunity and negatively regulates the IFN response, which provides new insights into the IFN system of C. carpio.


Sign in / Sign up

Export Citation Format

Share Document