scholarly journals Power controllable gain switched fiber laser at ~ 3 μm and ~ 2.1 μm

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yiwen Shi ◽  
Jianfeng Li ◽  
Chendong Lai ◽  
Hanlin Peng ◽  
Chen Zhu ◽  
...  

AbstractBased on a hybrid pumping method consisting of a 1150 nm continuous-wave pump source and a 1950 nm pulsed pump source, we demonstrate a power controllable gain-switched fiber laser in dual wavebands at ~ 3 μm and ~ 2.1 μm. Different pumping schemes for pumping a Ho3+-doped ZBLAN fiber are studied. Using only the 1950 nm pulsed pump source, ~ 2.1 μm gain-switched pulses with single and double pulses are obtained separately at different pump powers. This phenomenon indicates that the 1950 nm pulsed pump source acts as a modulator to trigger different states of the ~ 2.1 μm pulses. Moreover, by fixing the 1150 nm pump power at 3.259 W and adjusting the 1950 nm pump power, the output power of the ~ 2.1 μm gain-switched pulsed laser is flexibly controlled while the ~ 3 μm laser power is almost unchanged, inducing the maximum output powers of 167.96 mW and 260.27 mW at 2910.16 nm and 2061.65 nm, respectively. These results suggest that the comparatively low power of the ~ 2.1 μm gain-switched pulsed laser in dual-waveband laser can be efficiently overcome by reasonably controlling the 1950 nm pump power.

Author(s):  
Chen Shi ◽  
Hanwei Zhang ◽  
Xiaolin Wang ◽  
Pu Zhou ◽  
Xiaojun Xu

Compared with traditional uniform fibers, tapered fiber has numerous unique advantages, such as larger mode area, higher pump absorption, suppression to nonlinear effects, and maintaining good beam quality. In this manuscript, we have constructed an all-fiberized fiber amplifier which is based on a piece of ytterbium-doped tapered double-clad fiber (T-DCF). The fiber amplifier is operated under continuous wave (CW) regime at 1080 nm wavelength. The $M^{2}$ factor of the amplifier at 1.39 kW output power is ${\sim}1.8$. The maximum output power of the system reached 1.47 kW, which, to the best of our knowledge, is the highest output power of long tapered fiber based fiber laser system. Our result successfully verifies the potential of power scalability and all-fiberized capability of long tapered fiber, and the performance of our system can be further enhanced by fiber design optimization.


2019 ◽  
Vol 8 (3) ◽  
pp. 1022-1027
Author(s):  
Belal Ahmed Hamida ◽  
Tawfig Eltaif ◽  
Farhan Daniel Bin Mohd Noh ◽  
Sheroz Khan

This paper reported the effect of different coupling ratio in continuous wave fiber laser in a ring cavity configuration. Different coupling ratios of 10/90 and 50/50 were tested. Where the output power may vary depending on the ratio and it can be applied to specific area that requires either high or low output power. In addition, generation of passive Q-switched erbium doped fiber laser (EDFL) using graphene based saturable absorber in ring cavity using different coupling ratio was experimentally investigated. As a result, wavelength centered at 1566.62nm is obtain from EDFL cavity. Moreover, the cavity using coupler of 50/50 is capable to achieve Q-switched pulses as compared to the cavity using coupler of 10/90. Where the maximum output power recorded is 336mW with pulse repetition rate of 23.74 kHz. In addition, the pulse width is 3.84µs, and pulse energy is 14.15nJ.


2021 ◽  
Vol 11 (1) ◽  
pp. 407
Author(s):  
Jinho Lee ◽  
Ju Han Lee

This study reports a Q-switching-based, 2058-nm holmium (Ho) fiber laser incorporating a saturable absorber (SA) based on graphene oxide (GO). The SA was prepared with a side-polished fiber, while GO particles were deposited onto the fiber-polished surface to realize an all-fiber SA. A continuous-wave thulium-doped all-fiber laser, which was configured with a master-oscillator power-amplifier (MOPA) structure, was constructed as a pumping source. By inserting the fabricated SA into an all-fiber ring resonator based on 1-m length of Ho-doped fiber, Q-switched pulses could readily be obtained at a wavelength of 2058 nm. The pulse width was observed to vary from 2.01 to 1.56 μs as the pump power was adjusted from ~759 to 1072 mW, while the repetition rate was tunable from 45.56 to 56.12 kHz. The maximum values of average optical power and pulse energy were measured as ~11.61 mW and 207.05 nJ, respectively, at a ~1072 mW pump power.


2004 ◽  
Vol 12 (25) ◽  
pp. 6088 ◽  
Author(s):  
Y. Jeong ◽  
J. K. Sahu ◽  
D. N. Payne ◽  
J. Nilsson

Laser Physics ◽  
2021 ◽  
Vol 32 (2) ◽  
pp. 025801
Author(s):  
Xiangrui Liu ◽  
Zhuang Li ◽  
Chengkun Shi ◽  
Bo Xiao ◽  
Run Fang ◽  
...  

Abstract We demonstrated 22 W LD-pumped high-power continuous-wave (CW) deep red laser operations at 718.5 and 720.8 nm based on an a-cut Pr3+:YLF crystal. The output power of both polarized directions reached the watt-level without output power saturation. A single wavelength laser operated at 720.8 nm in the π-polarized direction was achieved, with a high output power of 4.5 W and high slope efficiency of approximately 41.5%. To the best of our knowledge, under LD-pumped conditions, the laser output power and slope efficiency are the highest at 721 nm. By using a compact optical glass plate as an intracavity etalon, we suppressed the π-polarized 720.8 nm laser emission. And σ-polarized single-wavelength laser emission at 718.5 nm was achieved, with a maximum output power of 1.45 W and a slope efficiency of approximately 17.8%. This is the first time that we have achieved the σ-polarized laser emission at 718.5 nm generated by Pr3+:YLF lasers.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Zhipeng Qin ◽  
Guoqiang Xie ◽  
Jian Zhang ◽  
Jingui Ma ◽  
Peng Yuan ◽  
...  

We report on a continuous-wave (CW) and passively Q-switched Er:Y2O3 ceramic laser in mid-infrared spectral region. In the CW regime, a maximum output power of 2.07 W is achieved at 2717.3 nm with a slope efficiency of 13.5%. Stable passive Q-switching of the Er:Y2O3 ceramic laser is demonstrated based on semiconductor saturable absorber mirror. Under an absorbed pump power of 12.4 W, a maximum average output power of 223 mW is generated with a pulse energy of 1.7 μJ and a pulse width of 350 ns at 2709.3 nm.


Author(s):  
Siti Nur Fatin Zuikafly ◽  
Nor Farhah Razak ◽  
Rizuan Mohd Rosnan ◽  
Sulaiman Wadi Harun ◽  
Fauzan Ahmad

In this work, a Graphene slurry based passive Q-switcher fabricated from Graphene-Polylactic acid (PLA) filament which is used for 3D printing. To produce the Graphene slurry, the diameter of the filament was reduced and Tetrahydrofuran (THF) was used to dissolve the PLA. The Graphene-THF suspension was drop cast to the end of a fiber ferrule and the THF then evaporated to develop Graphene slurry based SA which is integrated in fiber laser cavity. At threshold input pump power of 30.45 mW, a Q-switched Erbium-doped fiber laser (EDFL) can be observed with the wavelength centered at 1531.01 nm and this remained stable up to a pump power of 179.5 mW. As the pump power was increased gradually, an increase in the repetition rates was recorded from 42 kHz to 125 kHz, while the pulse width was reduced to 2.58 μs from 6.74 μs. The Q-switched laser yielded a maximum pulse energy and peak power of 11.68 nJ and 4.16 mW, respectively. The proposed Graphene slurry based saturable absorber also produced a signal-to-noise ratio of 44 dB indicating a stable Q-switched pulsed laser.


2017 ◽  
Vol 31 (18) ◽  
pp. 1750206 ◽  
Author(s):  
Feifei Lu

We demonstrate the generation of harmonic mode-locking (HML) in an erbium-doped fiber laser with a microfiber-based rhenium disulfide (ReS2) saturable absorber (SA). Taking advantages of both saturable absorption and large third-order nonlinear effect of ReS2, HML pulse with 318.5 MHz repetition rate can be obtained, corresponding to 168th harmonic of fundamental repetition frequency of 1.896 MHz. When the pump power is increased gradually, the pulse interval remains constant, while the output power increases linearly. At the pump power of 450 mW, the output power is [Formula: see text]12 mW. The proposed high-repetition-rate pulse lasers would attract considerable attention due to its potential applications in soliton communications and frequency combs.


Sign in / Sign up

Export Citation Format

Share Document