scholarly journals Assessing ZNF154 methylation in patient plasma as a multicancer marker in liquid biopsies from colon, liver, ovarian and pancreatic cancer patients

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brendan F. Miller ◽  
Hanna M. Petrykowska ◽  
Laura Elnitski

AbstractOne epigenetic hallmark of many cancer types is differential DNA methylation occurring at multiple loci compared to normal tissue. Detection and assessment of the methylation state at a specific locus could be an effective cancer diagnostic. We assessed the effectiveness of hypermethylation at the CpG island of ZNF154, a previously reported multi-cancer specific signature for use in a blood-based cancer detection assay. To predict its effectiveness, we compared methylation levels of 3698 primary tumors encompassing 11 solid cancers, 724 controls, 2711 peripheral blood cell samples, and 350 noncancer disease tissues from publicly available methylation array datasets. We performed a single-molecule high-resolution DNA melt analysis on 71 plasma samples from cancer patients and 20 noncancer individuals to assess ZNF154 methylation as a candidate diagnostic metric in liquid biopsy and compared results to KRAS mutation frequency in the case of pancreatic carcinoma. We documented ZNF154 hypermethylation in early stage tumors, which did not increase in most noncancer disease or with respect to age or sex in peripheral blood cells, suggesting it is a promising target in liquid biopsy. ZNF154 cfDNA methylation discriminated cases from healthy donor plasma samples in minimal plasma volumes and outperformed KRAS mutation frequency in pancreatic cancer.

2016 ◽  
Vol 62 (11) ◽  
pp. 1482-1491 ◽  
Author(s):  
Nora Brychta ◽  
Thomas Krahn ◽  
Oliver von Ahsen

Abstract BACKGROUND Since surgical removal remains the only cure for pancreatic cancer, early detection is of utmost importance. Circulating biomarkers have potential as diagnostic tool for pancreatic cancer, which typically causes clinical symptoms only in advanced stage. Because of their high prevalence in pancreatic cancer, KRAS proto-oncogene, GTPase [KRAS (previous name: Kirsten rat sarcoma viral oncogene homolog)] mutations may be used to identify tumor-derived circulating plasma DNA. Here we tested the diagnostic sensitivity of chip based digital PCR for the detection of KRAS mutations in circulating tumor DNA (ctDNA) in early stage pancreatic cancer. METHODS We analyzed matched plasma (2 mL) and tumor samples from 50 patients with pancreatic cancer. Early stages (I and II) were predominant (41/50) in this cohort. DNA was extracted from tumor and plasma samples and tested for the common codon 12 mutations G12D, G12V, and G12C by chip-based digital PCR. RESULTS We identified KRAS mutations in 72% of the tumors. 44% of the tumors were positive for G12D, 20% for G12V, and 10% for G12C. One tumor was positive for G12D and G12V. Analysis of the mutations in matched plasma samples revealed detection rates of 36% for G12D, 50% for G12V, and 0% for G12C. The detection appeared to be correlated with total number of tumor cells in the primary tumor. No KRAS mutations were detected in 20 samples of healthy control plasma. CONCLUSIONS Our results support further evaluation of tumor specific mutations as early diagnostic biomarkers using plasma samples as liquid biopsy.


2016 ◽  
Vol 62 (7) ◽  
pp. 1002-1011 ◽  
Author(s):  
Athina Markou ◽  
Martha Zavridou ◽  
Ioanna Sourvinou ◽  
George Yousef ◽  
Sofia Kounelis ◽  
...  

Abstract BACKGROUND Circulating tumor cells (CTCs) and microRNAs (miRNAs) are important in liquid biopsies in which peripheral blood is used to characterize the evolution of solid tumors. We evaluated the expression levels of miR-21, miR-146a, miR-200c, and miR-210 in CTCs of breast cancer patients with verified metastasis and compared their expression levels in corresponding plasma and primary tumors. METHODS Expression levels of the miRNAs were quantified by quantitative reverse transcription PCR (RT-qPCR) in (a) 89 primary breast tumors and 30 noncancerous breast tissues and (b) CTCs and corresponding plasma of 55 patients with metastatic breast cancer and 20 healthy donors. For 30 of these patients, CTCs, corresponding plasma, and primary tumor tissues were available. RESULTS In formalin-fixed, paraffin-embedded tissues, these miRNAs were differentially expressed between primary breast tumors and noncancerous breast tissues. miR-21 (P < 0.001) and miR-146a (P = 0.001) were overexpressed, whereas miR-200c (P = 0.004) and miR-210 (P = 0.002) were underexpressed. In multivariate analysis, miR-146a overexpression was significantly [hazard ratio 2.969 (1.231–7.157), P = 0.015] associated with progression-free survival. In peripheral blood, all miRNAs studied were overexpressed in both CTC and corresponding plasma. There was a significant association between miR-21 expression levels in CTCs and plasma for 36 of 55 samples (P = 0.008). In plasma, ROC curve analysis revealed that miR-21, miR-146a, and miR-210 could discriminate patients from healthy individuals. CONCLUSIONS Metastasis-related miRNAs are overexpressed in CTCs and corresponding plasma; miR-21 expression levels highly correlate in CTCs and plasma; and miR-21, miR-146a, and miR-210 are valuable plasma biomarkers for discriminating patients from healthy individuals.


Medicine ◽  
2017 ◽  
Vol 96 (12) ◽  
pp. e6399 ◽  
Author(s):  
Yuanyuan Xiao ◽  
Zhihui Xie ◽  
Zhenyi Shao ◽  
Wen Chen ◽  
Hua Xie ◽  
...  

2021 ◽  
Vol 9 (9) ◽  
pp. e002709
Author(s):  
Sung-Woo Lee ◽  
He Yun Choi ◽  
Gil-Woo Lee ◽  
Therasa Kim ◽  
Hyun-Ju Cho ◽  
...  

BackgroundCD8+ tumor-infiltrating lymphocytes (TILs) comprise phenotypically and functionally heterogeneous subpopulations. Of these, effector memory CD45RA re-expressing CD8+ T cells (Temra) have been discovered and characterized as the most terminally differentiated subset. However, their exact ontogeny and physiological importance in association with tumor progression remain poorly understood.MethodsWe analyzed primary tumors and peripheral blood samples from 26 patients with non-small cell lung cancer and analyzed their phenotypes and functional characteristics using flow cytometry, RNA-sequencing, and bioinformatics.ResultsWe found that tumor-infiltrating Temra (tilTemra) cells largely differ from peripheral blood Temra (pTemra), with distinct transcriptomes and functional properties. Notably, although majority of the pTemra was CD27−CD28− double-negative (DN), a large fraction of tilTemra population was CD27+CD28+ double-positive (DP), a characteristic of early-stage, less differentiated effector cells. Trajectory analysis revealed that CD8+ TILs undergo a divergent sequence of events for differentiation into either DP or DN tilTemra. Such a differentiation toward DP tilTemra relied on persistent expression of CD27 and CD28 and was associated with weak T cell receptor engagement. Thus, a higher proportion of DP Temra was correlated with lower immunogenicity of tumor antigens and consequently lower accumulation of CD8+ TILs.ConclusionsThese data suggest a complex interplay between CD8+ T cells and tumors and define DP Temra as a unique subset of tumor-specific CD8+ TILs that are produced in patients with relatively low immunogenic cancer types, predicting immunogenicity of tumor antigens and CD8+ TIL counts, a reliable biomarker for successful cancer immunotherapy.


Lab on a Chip ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 1899-1915 ◽  
Author(s):  
Masoud S. Loeian ◽  
Sadegh Mehdi Aghaei ◽  
Farzaneh Farhadi ◽  
Veeresh Rai ◽  
Hong Wei Yang ◽  
...  

We report the development of the nanotube-CTC-chip for isolation of circulating tumor cells of multiple phenotypes from peripheral blood.


Sign in / Sign up

Export Citation Format

Share Document