scholarly journals Synthesis and release behavior of layered double hydroxides–carbamazepine composites

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ma. F. Peralta ◽  
S. N. Mendieta ◽  
I. R. Scolari ◽  
G. E. Granero ◽  
M. E. Crivello

AbstractCarbamazepine (CBZ) was incorporated into layered double hydroxides (LDH) to be used as a controlled drug system in solid tumors. CBZ has a formal charge of zero, so its incorporation in the anionic clay implies a challenge. Aiming to overcome this problem, CBZ was loaded into LDH with sodium cholate (SC), a surfactant with negative charge and, for comparison, without SC by the reconstruction method. Surprisingly, it was found that both resultant nanocomposites had similar CBZ encapsulation efficiency, around 75%, and the LDH-CBZ system without SC showed a better performance in relation to the release kinetics of CBZ in simulated body fluid (pH 7.4) and acetate buffer simulating the cellular cytoplasm (pH 4.8) than the system with SC. The CBZ dimensions were measured with Chem3D and, according to the basal spacing obtained from X-ray patterns, it can be arranged in the LDH-CBZ system as a monolayer with the long axis parallel to the LDH layers. Fourier transform infrared spectroscopy and solid state NMR measurements confirmed the presence of the drug, and thermogravimetric analyses showed an enhanced thermal stability for CBZ. These results have interesting implications since they increase the spectrum of LDH application as a controlled drug system to a large number of nonionic drugs, without the addition of other components.

2020 ◽  
Author(s):  
Maria Peralta ◽  
Silvia Mendieta ◽  
Ivana Scolari ◽  
Gladys Granero ◽  
Monica Crivello

Abstract Carbamazepine (CBZ) was incorporated into Layered Double Hydroxides (LDH) to be used as controlled drug delivery in solid tumors. CBZ has a formal charge of 0, which implies a challenge to be incorporated in the anionic clay. Aiming to overcome this problem, CBZ was first incorporated in micelles of sodium cholate (SC), a surfactant with negative charge. CBZ in SC micelles and, for comparison, free CBZ were incorporated in LDH by reconstruction method. It was found that resultant nano-composites had similar CBZ encapsulation efficiency, around 75 %, but drug release in simulated body fluid (pH 7.4) and acetate buffer (pH 4.8) was efficient only with the LDH-CBZ sample. CBZ dimensions were measured with Chem3D and, according to the basal spacing obtained from X rays patterns, it can arrange as monolayer with the long axis parallel to the LDH layers. Fourier Transform Infrared Spectroscopy confirmed the incorporation of the drug. Thermogravimetric analyses showed and enhanced thermal stability for CBZ. These results have interesting implications since they increase the spectrum of LDH application as controlled drug delivery to a large number of non-ionic drugs, without the addition of other components.


2011 ◽  
Vol 184 (1) ◽  
pp. 171-176 ◽  
Author(s):  
Myong A. Woo ◽  
Tae Woo Kim ◽  
Mi-Jeong Paek ◽  
Hyung-Wook Ha ◽  
Jin-Ho Choy ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4344
Author(s):  
Jakub Matusik ◽  
Youjun Deng

Mycotoxins in feed and food are highly toxic and pose a serious danger even at very low concentrations. The use of bentonites in animal diet can reduce toxin bioavailability. However, some mycotoxins like fumonisin B1 (FB1) form anionic species which excludes the use of negatively charged clays. Layered double hydroxides (LDH) with anion-exchange properties, in theory, can be perfect candidates to adsorb FB1. However, fundamental research on the use of LDH for mycotoxins removal is scarce and incomplete. Thus, the presented study was designed to explore such a possibility. The LDH materials with differing chemistry and layer charge were synthesized by co-precipitation both from metal nitrates and chlorides and were then tested for FB1 removal. XRD, FTIR, XPS, and chemical analysis were used for the LDH characterization and to obtain insight into the removal mechanisms. A higher adsorption capacity was observed for the Mg/Al LDH samples (~0.08–0.15 mol/kg) in comparison to the Mg/Fe LDH samples (~0.05–0.09 mol/kg) with no difference in removal efficiency between Cl and NO3 intercalated LDH. The adsorption capacity increased along with lower layer charge of Mg/Al and was attributed to the lower content of bonded carbonates and the increase of non-polar sites which led to matching between the adsorption domains of LDH with FB1. The FTIR analysis confirmed the negative effect of carbonates which hampered the adsorption at pH 7 and led to the highest adsorption at pH 5 (FB1 content ~15.8 ± 0.75 wt.%). The fast surface adsorption (1–2 min) was dominant and XRD analysis of the basal spacing indicated that no FB1 intercalation occurred in the LDH. The XPS confirmed a strong interaction of FB1 with Mg sites of LDH at pH 5 where the interaction with FB1 carboxylate moieties COO− was confirmed. The research confirmed a high affinity and selectivity of LDH structures towards anionic forms of FB1 mycotoxin.


2015 ◽  
Vol 60 (2) ◽  
pp. 1357-1359 ◽  
Author(s):  
Y. Hongbo ◽  
C. Meiling ◽  
W. Xu ◽  
G. Hong

Abstract The thermal decomposition of magnesium-aluminum layered double hydroxides (LDHs) was investigated by thermogravimetry analysis and differential scanning calorimetry (DSC) methods in argon environment. The influence of heating rates (including 2.5, 5, 10, 15 and 20K/min) on the thermal behavior of LDHs was revealed. By the methods of Kissinger and Flynn-Wall-Ozawa, the thermal kinetic parameters of activation energy and pre-exponential factor for the exothermic processes under non-isothermal conditions were calculated using the analysis of corresponding DSC curves.


2008 ◽  
Vol 73 (3) ◽  
pp. 321-331 ◽  
Author(s):  
Ramasamy Anbarasan ◽  
Wanduc Lee ◽  
Seung Soon

The inter-layer anion of layered double hydroxides (LDH) with a hydrotalcite (HT)-like structure was ion-exchanged with various organic surfactants, particularly with long chain aliphatic surfactants. After the ion-exchange process, the basal spacing of the LDH was increased and the increase of the basal spacing depended on various factors, such as the intercalation capacity functionality and orientation capability of the surfactant. Of the employed surfactants, stearic acid intercalated LDH showed the highest increase of the basal spacing, which was confirmed by XRD analysis. FTIR results supported the interaction of the surfactants with the LDH. In addition, an increase in the thermal stability of the dodecanedioic acid intercalated HT was evidenced by the TGA method.


2016 ◽  
Vol 56 (1) ◽  
pp. 63-74 ◽  
Author(s):  
Guillermo Puerta-Falla ◽  
Magdalena Balonis ◽  
Gabriel Falzone ◽  
Mathieu Bauchy ◽  
Narayanan Neithalath ◽  
...  

Soil Systems ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 37
Author(s):  
Massimo Pigna ◽  
Antonio Violante ◽  
Antonio Giandonato Caporale

The need for cost-effective adsorbents of inorganic arsenic (As(III) and As(V)) stimulates the academia to synthesize and test novel materials that can be profitably applied at large-scale in most affected areas worldwide. In this study, four different layered double hydroxides (Cu-Al-, Mg-Al-, Mg-Fe- and Zn-Al-LDH), previously synthesized and studied for As(III) removal capacity, were evaluated as potential adsorbents of As(V) from contaminated systems, in absence or presence of common inorganic anions (Cl−, F−, SO42−, HCO3− and H2PO4−). The As(V) desorption by H2PO4− was also assessed. Lastly, the As(V) adsorption capacities of the four layered double hydroxides (LDHs) were compared with those observed with As(III) in a complementary paper. All the LDHs adsorbed higher amounts of As(V) than As(III). Fe-Mg-LDH and Cu-Al-LDH showed higher adsorption capacities in comparison to Mg-Al-LDH and Zn-Al-LDH. The presence of competing anions inhibited the adsorption of two toxic anions according to the sequence: Cl− < F− < SO42− < HCO3− < < H2PO4−, in particular on Mg-Al-LDH and Zn-Al-LDH. The kinetics of As(V) desorption by H2PO4− indicated a higher occurrence of more easily desorbable As(V) on Zn-Al-LDH vs. Cu-Al-LDH. In conclusion, synthetic Cu- and Fe-based LDHs can be good candidates for an efficient removal of inorganic As, however, further studies are necessary to prove their real feasibility and safety.


Sign in / Sign up

Export Citation Format

Share Document